• 제목/요약/키워드: Wind turbine capacity density

검색결과 14건 처리시간 0.038초

풍력발전기의 설비이용률 계산을 위한 확률밀도함수의 비교 (Comparison of Probability Density Functions for Caculation of Capacity Factors of Wind Turbine Generator)

  • 강택근;허종철;좌종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1338-1341
    • /
    • 2002
  • The Weibull probability density function and the Rayleigh function are compared by analyzing the relations of the capacity factors which are compared the actual wind speed frequency curve with which are modelled using the probability density functions with different mean wind speeds. For this analysis, the wind speed means of arithmetic, root mean square, cubic mean cuberoot, and standard deviations are computed from the measured wind speed data of a specific site and the coefficients of probability density functions are calculated. The capacity factors for Vestas 850[kW] wind turbine are calculated and analyzed. The results shows that the wind speed frequency curve by Rayleigh function is more close to the actual curve than by Weibull function. The more the wind speed frequency curve is close to the actual one, the more the capacity factors become large values.

  • PDF

10MW급 해상풍력발전기 드라이브 트레인을 위한 마그네틱 기어의 속도별 설계 및 출력밀도 특성분석 (Power Density Characteristics Analysis and Design of Magnetic Gear according to Speed for Drive Train of 10MW Offshore Wind Turbine)

  • 김찬호;김용재
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1718-1723
    • /
    • 2015
  • The diameter of the rotor of 2MW wind turbine is being developed by a number of companies with more than 80m, reliability and economic efficiency of the wind power generator has been improved. The need for large-scale wind turbine with excellent economy has been attracting attention because the new orders and the location of the wind turbine market has reached a limit. Technology development for enlargement of wind turbine is possible not only the improvement of energy efficiency but also reduce the construction costs per unit capacity. However, mechanical gearboxes used in wind generators have problems of wear, damage, need for lubrication oil and maintenance. Therefore, we want to configure the gearbox of a large-scale wind turbine using a magnetic gear in order to solve these problems of mechanical gearbox.

도서지역 소형풍력발전기 에너지 발생량 평가 (Evaluation of Energy Production for a Small Wind Turbine Installed in an Island Area)

  • 장춘만;이종성;전완호;임태균
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.558-565
    • /
    • 2013
  • This paper presents how to determine AEP(Annual Energy Production) by a small wind turbine in DuckjeokDo island. Evaluation of AEP is introduced to make a self-contained island including renewable energy sources of wind, solar, and tidal energy. To determine the AEP in DuckjeokDo island, a local wind data is analyzed using the annual wind data from Korea Institute of Energy Research firstly. After the wind data is separated in 12-direction, a mean wind speed at each direction is determined. And then, a small wind turbine power curve is selected by introducing the capacity of a small wind turbine and the energy production of the wind turbine according to each wind direction. Finally, total annual wind energy production for each small wind turbine can be evaluated using the local wind density and local energy production considering a mechanical energy loss. Throughout the analytic study, it is found that the AEP of DuckjeokDo island is about 2.02MWh/y and 3.47MWh/y per a 1kW small wind turbine installed at the altitude of 10 m and 21m, respectively.

와이블 형상계수에 따른 이용률 변화 (Variation of Capacity Factors by Weibull Shape Parameters)

  • 권일한;김진한;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.32-39
    • /
    • 2013
  • Effects of Weibull shape parameter, k, on capacity factors of wind turbines were investigated. Wind distributions with mean wind speeds of 5 m/s, 6 m/s, 7 m/s and 8 m/s were simulated and used to estimate the annual energy productions and capacity factors of a 2MW wind turbine for various Weibull shape parameters. It was found from the study that the capacity factors of wind turbines are much affected by Weibull shape parameters. When the annual mean wind speed at the hub height of a wind turbine was about 7 m/s, and the air density was assumed to be 1.225 $kg/m^3$, the maximum capacity factor of a 2 MW wind turbine having a rated wind speed of 13 m/s was found to occur with the shape parameter of 2. It was also found that as the mean wind speed increased, the Weibull k parameter which yielded the maximum capacity factor increased. The simulated results were also validated by predictions of capacity factors of wind turbines using wind data measured in complex terrain.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

3MW 풍력발전시스템 출력 성능시험 및 불확도 분석 (Power Performance Testing and Uncertainty Analysis for a 3MW Wind Turbine)

  • 김건훈;현승건
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.10-15
    • /
    • 2010
  • The installed capacity of wind turbines in KOREA are growing and enlarging by the central government's support program. Thus, the importance of power performance verification and its uncertainty analysis are recognizing rapidly. This paper described the power testing results of a 3MW wind turbine and analysed an uncertainty level of measurements. The measured power curves are very closely coincide with the calculated one and the annual power production under the given Rayleigh wind speed distribution are estimated with the 3.6~12.7% of uncertainty but, in the dominant wind speed region as 7~8m/s, the uncertainty are stably decreased to 6.3~5.3%.

Site calibration이 풍력발전시스템 성능시험 불확도에 미치는 영향 연구 (A Study for the Effect on the Uncertainty of Power Performance Testing of Windturbine by a Site Calibration)

  • 김건훈;현승건
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.107-112
    • /
    • 2011
  • A comparison study between two performance testing results, one is on the site calibration not needed and the other is needed, was proceeded for the understanding on the effect of site calibration on the complex terrain. As a result, it is revealed that all of uncertainty components is effected by the topographical features dramatically. And the maximum difference of uncertainty reached at around 8% of rated capacity of wind turbine. So, the site calibration is an effective method to remove the variable wind effect by the ground complexity and must be proceeded before the power performance testing of a wind turbine.

한국 서해안의 해상풍력발전 부존량 평가 (Assessment of Offshore Wind Power Potential in the Western Seas of Korea)

  • 고동휘;정신택;강금석
    • 한국해안·해양공학회논문집
    • /
    • 제27권4호
    • /
    • pp.266-273
    • /
    • 2015
  • 본 연구에서는 국내 서해안의 해상풍력 발전을 위한 적지를 검토하기 위해 기상청에서 제공하는 6개 지점(서수도, 가대암, 십이동파, 갈매여, 해수서, 지귀도)의 2014년 연간 풍속 자료를 수집하고 이를 분석하였다. 관측된 풍속 자료는 Rayleigh 모델과 Weibull 모델에 적합하였으며, 풍속 출현빈도에 따라 연간 부존량을 추정하였다. 풍력발전기 모델로는 GWE-3kH(3 kW급) 터빈과 GWE-10KU (10 kW급) 터빈을 선정하였으며 이의 성능곡선을 이용하였다. 그 결과, 서수도, 가대암, 십이동파, 갈매여, 해수서, 지귀도의 연평균 풍속은 각각 4.60, 4.5, 5.00, 5.13, 5.51, 5.90 m/s로 나타났으며, 연간 발전량은 10,622.752, 11,313.05, 13,509.41, 14,899.55, 17,106.13, 19,660.85kWh로 나타났다. 6개 지점의 연평균에너지 밀도는 전체적으로 poor와 marginal 계급으로 나타났으며, 터빈 이용률은 지귀도가 22.44%로 가장 높게 나타났다.

50kW 풍력블레이드 설계에 관한 연구 (A Study on Design of Wind Blade with Rated Capacity of 50kW)

  • 김상만;문채주;정권성
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.485-492
    • /
    • 2021
  • 50kW 또는 그 이하의 정격용량을 갖는 풍력터빈은 일반적으로 소형풍력으로 간주한다. 소형풍력터빈은 독립형 전력시스템과 가전제품, 독립적인 적용 및 에너지저장장치, 태양광, 소수력, 디젤엔진과 같은 다른 에너지 기술을 조합하여 동시에 사용할 수 있는 매력적인 대체품이다. 연구목적은 터빈블레이드 제작법과 구조가 가능한 상업용 개발과정과 유사성을 갖도록 50kW급 풍력터빈 블레이드를 개발하기 위한 것이다. 목함에 기반하여 제작된 몰드기법은 탄소섬유와 열경화성 수지인 유리섬유를 사용한 경량설계, 다중부목, 오목성을 유지하기 위하여 채택한다. 수 작업형 시제품 제조법은 공기역학적인 평판형의 반복적인 설계를 통해서 단주기를 갖는 고밀도 형상 몰드를 사용하여 개발한 것이다. 5개의 블레이드 생산공정을 통하여 제작하고, 블레이드의 주요 구성요소는 IEC-61400-23 규정에 따라 설계의 적절성을 검증하기 위하여 시험하며. 또한, 개발된 블레이드를 갖는 풍력시스템은 성능특성을 검증하기 위하여 IEC 61400-12 규정에 따라 시험한다. 블레이드와 터빈시스템의 시험결과는 상업운전에서 요구되는 유효한 설계조건을 확인하였다.