• Title/Summary/Keyword: Wind prediction

Search Result 937, Processing Time 0.025 seconds

The Effect of Inversion Layer on the Land and Sea Breeze Circulations near the Gangneung (역전층이 강릉시 주변 해륙풍 순환에 미치는 영향 연구)

  • NamGung, Ji-Yeon;Yu, Jae-Hoon;Kim, Nam-Won;Choi, Man-Kyu;Ham, Dong-Ju;Kim, Hoon-Sang;Jang, You-Jung;Choi, Eun-Kyung
    • Atmosphere
    • /
    • v.15 no.4
    • /
    • pp.229-239
    • /
    • 2005
  • The effect of inversion layer on the land and sea breeze near the Gangneung city was investigated. The land and sea breeze occurrence days were selected, and the height and the intensity of inversion layer were calculated with the upper air observational data of the Sokcho Station. The relationships between the temperature variation near the Gangneung and the inflow time, inland penetration and the inflow depth of the land and sea breeze were also analyzed. And the Gangwon Short-range prediction system was verified with the comparison of surface stream line by the Gangwon short-range prediction system with the AWS wind vector data. It was revealed that the inversion layer tended to block the sea breeze, shorten the inland penetration distance and lower the inflow depth, causing the temperature rise. The comparison and analysis of surface steam line by the Gangwon short-range prediction system and the AWS wind vector showed that the system quite well simulated the sea breeze, thus the system could be well utilized in the prediction of land and sea breeze.

Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process (복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석)

  • Jee, Joon-Bum;Min, Jae-Sik;Jang, Min;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.385-398
    • /
    • 2017
  • Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.

Wind Turbine Performance and Noise Prediction by Using Free Wake Method (자유후류 해석을 통한 수평축 풍력 터빈의 성능 및 소음 예측)

  • 신형기;선효성;이수갑
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.134-141
    • /
    • 2002
  • In this paper, a free wake analysis based on the curved vortex element and CVC wake model is used to predict the aerodynamic performance and noise for HAWT. Also for prediction of RPM, a maximum value through a quadratic regression was suggested. And for a noise prediction, the broadband noise prediction method based on experimental equation was used. The curved vortex element uses a BCVE and an SIVE instead of a straight vertex element. In the CVC wake model, the vortex strengths are assumed to be constant along a span and a vortex filament. The free wake structure made by the curved vortex element and CVC was substituted for a vortex lattice, so it has an advantage for the less calculation time and a depiction of accurate wake structure. For the verification of this program, calculated results are compared with Mr. Kim's experiment model and Zond Z-40FS for performance and with WTS-4 and USWP models for noise. Good agreements are obtained between the predicted and the measured data for the performance and far-field noise spectra.

Prototype Development of Marine Information based Supporting System for Oil Spill Response (해양정보기반 방제지원시스템 프로토타입 구축에 관한 연구)

  • Kim, Hye-Jin;Lee, Moonjin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.182-192
    • /
    • 2008
  • In oder to develop a decision supporting system for oil spill response, the prototype of pollution response support system which has integrated oil spill prediction system and pollution risk prediction system has developed for Incheon-Daesan area. Spill prediction system calculates oil spill aspects based on real-time wind data and real-time water flow and the residual volume of spilt oil and spread pattern are calculated considering the characteristic of spilt oil. In this study, real-time data is created from results of real-time meteorological forecasting model(National Institute of Environmental Research) using ftp, real-time tidal currents datasets are built using CHARRY(Current by Harmonic Response to the Reference Yardstick) model and real-time wind-driven currents are calculated applying the correlation function between wind and wind-driven currents. In order to model the feature which is spilt oil spreading according to real-time water flow is weathered, the decrease ratio by oil kinds was used. These real-time data and real-time prediction information have been integrated with ESI(Environmental Sensitivity Index) and response resources and then these are provided using GIS as a whole system to make the response strategy.

  • PDF

A Study on the Prediction Function of Wind Damage in Coastal Areas in Korea (국내 해안지역의 풍랑피해 예측함수에 관한 연구)

  • Sim, Sang-bo;Kim, Yoon-ku;Choo, Yeon-moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • The frequency of natural disasters and the scale of damage are increasing due to the abnormal weather phenomenon that occurs worldwide. Especially, damage caused by natural disasters in coastal areas around the world such as Earthquake in Japan, Hurricane Katrina in the United States, and Typhoon Maemi in Korea are huge. If we can predict the damage scale in response to disasters, we can respond quickly and reduce damage. In this study, we developed damage prediction functions for Wind waves caused by sea breezes and waves during various natural disasters. The disaster report (1991 ~ 2017) has collected the history of storm and typhoon damage in coastal areas in Korea, and the amount of damage has been converted as of 2017 to reflect inflation. In addition, data on marine weather factors were collected in the event of storm and typhoon damage. Regression analysis was performed through collected data, Finally, predictive function of the sea turbulent damage by the sea area in 74 regions of the country were developed. It is deemed that preliminary damage prediction can be possible through the wind damage prediction function developed and is expected to be utilized to improve laws and systems related to disaster statistics.

A Study on the Flight Initiation Wind Speed of Wind-Borne Debris (강풍에 의한 비산물의 비행 시작 풍속에 관한 연구)

  • Jeong, Houigab;Lee, Seungho;Park, Junhee;Kwon, Soon-duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.105-110
    • /
    • 2020
  • This study provides a method and data for predicting the flight initiation wind speed of wind-borne debris. From the force equilibrium acting on debris including aerodynamic and inertia forces, the equation for predicting the flight initiation wind speeds are presented. Wind tunnel tests were carried out to provide necessary aerodynamic data in the equation for the debris with various aspect ratios. The proposed equation for flight initiation wind speeds was validated from free flying tests in the wind tunnel. The flights of debris were mostly initiated by slip when width to thickness was less than 10, otherwise overturning were dominant. The actual flight initiation speeds were lower than that of the computed ones. The surface boundary layer flow and the gap between the debris and surface might affect the prediction error.

Nonlinear dynamic performance of long-span cable-stayed bridge under traffic and wind

  • Han, Wanshui;Ma, Lin;Cai, C.S.;Chen, Suren;Wu, Jun
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.249-274
    • /
    • 2015
  • Long-span cable-stayed bridges exhibit some features which are more critical than typical long span bridges such as geometric and aerodynamic nonlinearities, higher probability of the presence of multiple vehicles on the bridge, and more significant influence of wind loads acting on the ultra high pylon and super long cables. A three-dimensional nonlinear fully-coupled analytical model is developed in this study to improve the dynamic performance prediction of long cable-stayed bridges under combined traffic and wind loads. The modified spectral representation method is introduced to simulate the fluctuating wind field of all the components of the whole bridge simultaneously with high accuracy and efficiency. Then, the aerostatic and aerodynamic wind forces acting on the whole bridge including the bridge deck, pylon, cables and even piers are all derived. The cellular automation method is applied to simulate the stochastic traffic flow which can reflect the real traffic properties on the long span bridge such as lane changing, acceleration, or deceleration. The dynamic interaction between vehicles and the bridge depends on both the geometrical and mechanical relationships between the wheels of vehicles and the contact points on the bridge deck. Nonlinear properties such as geometric nonlinearity and aerodynamic nonlinearity are fully considered. The equations of motion of the coupled wind-traffic-bridge system are derived and solved with a nonlinear separate iteration method which can considerably improve the calculation efficiency. A long cable-stayed bridge, Sutong Bridge across the Yangze River in China, is selected as a numerical example to demonstrate the dynamic interaction of the coupled system. The influences of the whole bridge wind field as well as the geometric and aerodynamic nonlinearities on the responses of the wind-traffic-bridge system are discussed.

Evaluation of mode-shape linearization for HFBB analysis of real tall buildings

  • Tse, K.T.;Yu, X.J.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.423-441
    • /
    • 2014
  • The high frequency base balance (HFBB) technique is a convenient and relatively fast wind tunnel testing technique for predicting wind-induced forces for tall building design. While modern tall building design has seen a number architecturally remarkable buildings constructed recently, the characteristics of those buildings are significantly different to those that were common when the HFBB technique was originally developed. In particular, the prediction of generalized forces for buildings with 3-dimensional mode shapes has a number of inherent uncertainties and challenges that need to be overcome to accurately predict building loads and responses. As an alternative to the more conventional application of general mode shape correction factors, an analysis methodology, referred to as the linear-mode-shape (LMS) method, has been recently developed to allow better estimates of the generalized forces by establishing a new set of centers at which the translational mode shapes are linear. The LMS method was initially evaluated and compared with the methods using mode shape correction factors for a rectangular building, which was wind tunnel tested in isolation in an open terrain for five incident wind angles at $22.5^{\circ}$ increments from $0^{\circ}$ to $90^{\circ}$. The results demonstrated that the LMS method provides more accurate predictions of the wind-induced loads and building responses than the application of mode shape correction factors. The LMS method was subsequently applied to a tall building project in Hong Kong. The building considered in the current study is located in a heavily developed business district and surrounded by tall buildings and mixed terrain. The HFBB results validated the versatility of the LMS method for the structural design of an actual tall building subjected to the varied wind characteristics caused by the surroundings. In comparison, the application of mode shape correction factors in the HFBB analysis did not directly take into account the influence of the site specific characteristics on the actual wind loads, hence their estimates of the building responses have a higher variability.

A Wind Generated Wave Prediction System in a Finite Depth Sea (바람에 의해 생성된 파도의 예측과 깊이변화의 영향)

  • Kwon, Sun. H.
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.17-25
    • /
    • 1989
  • 해양에서 바람에 의해 생성된 파도를 예측하는 모델을 제시하고 이 모델의 성질을 무한 해면에서 나타내 보이고 마지막으로 파의 이송과 깊이의 영향에 관한 결과를 유한폭의 해상에서 계산해서 비교 가능한 자료와 비교해 보았다.

  • PDF

A STUDY ON THE STORE SEPARATION PREDICTION TECHNIQUE USING GRID SURVEY METHOD (GRID SURVEY 방법을 이용한 무장분리예측 기법 연구)

  • Kim, Sang-Jin;Kang, In-Mo;Kim, Myung-Seong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.136-141
    • /
    • 2006
  • A prediction of store separation trajectory using grid survey method has been conducted. For the grid survey method, store's aerodynamic flowfield data such as freestream and grid data is needed to solve 6 degree of freedom(6-DOF) equations of motion. In the presented study, aerodynamic flowfield data was generated by Euler solver instead of CTS wind tunnel test. The predicted trajectories shows good agreement with CTS test results.

  • PDF