• Title/Summary/Keyword: Wind prediction

Search Result 936, Processing Time 0.03 seconds

Prediction of negative peak wind pressures on roofs of low-rise building

  • Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.623-647
    • /
    • 2014
  • In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

Research on Wind Waves Characteristics by Comparison of Regional Wind Wave Prediction System and Ocean Buoy Data (지역 파랑 예측시스템과 해양기상 부이의 파랑 특성 비교 연구)

  • You, Sung-Hyup;Park, Jong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Analyses of wind wave characteristics near the Korean marginal seas were performed in 2008 and 2009 by comparisons of an operational wind wave forecast model and ocean buoy data. In order to evaluate the model performance, its results were compared with the observed data from an ocean buoy. The model used in this study was very good at predicting the characteristics of wind waves near the Korean Peninsula, with correlation coefficients between the model and observations of over 0.8. The averaged Root Mean Square Error (RMSE) for 48 hrs of forecasting between the modeled and observed waves and storm surges/tide were 0.540 m and 0.609 m in 2008 and 2009, respectively. In the spatial and seasonal analysis of wind waves, long waves were found in July and September at the southern coast of Korea in 2008, while in 2009 long waves were found in the winter season at the eastern coast of Korea. Simulated significant wave heights showed evident variations caused by Typhoons in the summer season. When Typhoons Kalmaegi and Morakot in 2008 and 2009 approached to Korean Peninsula, the accuracy of the model predictions was good compared to the annual mean value.

A STUDY on FOREST FIRE SPREADING ALGORITHM with CALCULATED WIND DISTRIBUTION

  • Song, J.H.;Kim, E.S.;Lim, H.J.;Kim, H.;Kim, H.S.;Lee, S.Y
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.305-310
    • /
    • 1997
  • There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.

  • PDF

A study on comparing short-term wind power prediction models in Gunsan wind farm (군산풍력발전단지의 풍력발전량 단기예측모형 비교에 관한 연구)

  • Lee, Yung-Seop;Kim, Jin;Jang, Moon-Seok;Kim, Hyun-Goo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.585-592
    • /
    • 2013
  • As the needs for alternative energy and renewable energy increase, there has been a lot of investment in developing wind energy, which does not cause air pollution nor the greenhouse gas effect. Wind energy is an environment friendly energy that is unlimited in its resources and is possible to be produced wherever the wind blows. However, since wind energy heavily relies on wind that has unreliable characteristics, it may be difficult to have efficient energy transmissions. For this reason, an important factor in wind energy forecasting is the estimation of available wind power. In this study, Gunsan wind farm data was used to compare ARMA model to neural network model to analyze for more accurate prediction of wind power generation. As a result, the neural network model was better than the ARMA model in the accuracy of the wind power predictions.

Analysis of the Impact of QuikSCAT and ASCAT Sea Wind Data Assimilation on the Prediction of Regional Wind Field near Coastal Area (QuikSCAT과 ASCAT 해상풍 자료동화가 연안 지역 국지 바람장 예측에 미치는 영향 분석)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.309-319
    • /
    • 2012
  • In order to clarify the characteristics of satellite based sea wind data assimilations applied for the estimation of wind resources around the Korean peninsula, several numerical experiments were carried out using WRF. Satellite sea wind data used in this study are QuikSCAT from NASA and ASCAT from ESA. When the wind resources are estimated with data assimilation, its estimation accuracy is improved clearly. Since the band width is broad for QuikSCAT, statistical accuracy of the estimated wind resources with QuikSCAT assimilations is better than that with ASCAT assimilations. But the wind estimated around sub-satellite point matches better with of ASCAT compared to QuikSCAT assimilation. The impact of sea wind data assimilation on the prediction of wind resources lasts for 6 hours after data assimilation starts, therefore the data assimilation processes using both fine spatial and temporal resolutions of sea wind are needed to make a more useful wind resource map of the Korean Peninsula.

A Prediction on the Pollution Level of Outdoor Insulator with Regression Analysis (회귀분석을 활용한 옥외 절연물의 오손도 예측)

  • 최남호;구경완;한상옥
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.137-143
    • /
    • 2003
  • The degree of contamination on outdoor insulator is ons of the most importance factor to determine the pollution level of outdoor insulation, and the sea salt is known as the most dangerous pollutant. As shown through the preceding study, the generation of salt pollutant and the pollution degree of outdoor insulator have a close relation with meteorological conditions, such as wind velocity, wind direction, precipitation and so fourth. So, in this paper, we made an investigation on the prediction method, a statistical estimation technique for equivalent salt deposit density of outdoor insulator with multiple linear regression analysis. From the results of the analysis, we proved the superiority of the prediction method in which the variables had a very close(about 0.9) correlation coefficient. And the results could be applied to establish the Pollution Prediction System for power utilities, and the system could provide an invaluable information for the design and maintenance of outdoor insulation system.

Condition Assessment for Wind Turbines with Doubly Fed Induction Generators Based on SCADA Data

  • Sun, Peng;Li, Jian;Wang, Caisheng;Yan, Yonglong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.689-700
    • /
    • 2017
  • This paper presents an effective approach for wind turbine (WT) condition assessment based on the data collected from wind farm supervisory control and data acquisition (SCADA) system. Three types of assessment indices are determined based on the monitoring parameters obtained from the SCADA system. Neural Networks (NNs) are used to establish prediction models for the assessment indices that are dependent on environmental conditions such as ambient temperature and wind speed. An abnormal level index (ALI) is defined to quantify the abnormal level of the proposed indices. Prediction errors of the prediction models follow a normal distribution. Thus, the ALIs can be calculated based on the probability density function of normal distribution. For other assessment indices, the ALIs are calculated by the nonparametric estimation based cumulative probability density function. A Back-Propagation NN (BPNN) algorithm is used for the overall WT condition assessment. The inputs to the BPNN are the ALIs of the proposed indices. The network structure and the number of nodes in the hidden layer are carefully chosen when the BPNN model is being trained. The condition assessment method has been used for real 1.5 MW WTs with doubly fed induction generators. Results show that the proposed assessment method could effectively predict the change of operating conditions prior to fault occurrences and provide early alarming of the developing faults of WTs.

Group key management protocol adopt to cloud computing environment (클라우드 컴퓨팅 환경에 적합한 그룹 키 관리 프로토콜)

  • Kim, Yong-Tae;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

A Study on the Configuration Design and the Performance Analysis of the 20kW HAWT based on BEMT (BEMT를 적용한 20kW 수평축 풍력터빈 형상설계 및 성능해석)

  • Kang, Ho-Keun;Nam, Cheong-Do;Lee, Young-Ho;Kim, Beom-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.669-676
    • /
    • 2006
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) is developed by use of BEMT, which is the standard computational technique for prediction of power curves of wind turbines. The Prandtl's tip loss theory is adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil are predicted via X-FOIL and the post stall characteristics of S-809 also are estimated by the Viterna's equations.$^{[13]}$ All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results. performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW(FIL-20) at design conditions. The experimental aerodynamic parameters and the X-FOIL data are used for the power Prediction of the FIL-20 respectively The comparison results shows good agreement in power prediction.

Effect of a Coupled Atmosphere-ocean Data Assimilation on Meteorological Predictions in the West Coastal Region of Korea (대기-해양 결합 자료동화가 서해 연안지역의 기상예측에 미치는 영향 연구)

  • Lee, Sung-Bin;Song, Sang-Keun;Moon, Soo-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.7
    • /
    • pp.617-635
    • /
    • 2022
  • The effect of coupled data assimilation (DA) on the meteorological prediction in the west coastal region of Korea was evaluated using a coupled atmosphere-ocean model (e.g., COAWST) in the spring (March 17-26) of 2019. We performed two sets of simulation experiments: (1) with the coupled DA (i.e., COAWST_DA) and (2) without the coupled DA (i.e., COAWST_BASE). Overall, compared with the COAWST_BASE simulation, the COAWST_DA simulation showed good agreement in the spatial and temporal variations of meteorological variables (sea surface temperature, air temperature, wind speed, and relative humidity) with those of the observations. In particular, the effect of the coupled DA on wind speed was greatly improved. This might be primarily due to the prediction improvement of the sea surface temperature resulting from the coupled DA in the study area. In addition, the improvement of meteorological prediction in COAWST_DA simulation was also confirmed by the comparative analysis between SST and other meteorological variables (sea surface wind speed and pressure variation).