• 제목/요약/키워드: Wind power generating

검색결과 137건 처리시간 0.032초

배전선로 전압강하에 대한 이중 여자 풍력발전시스템 특성 해석 (Analysis of doubly-fed induction generator based wind power system for voltage sag)

  • 차한주;이상회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1234-1235
    • /
    • 2007
  • This paper represents the generating principles of the doubly-fed induction generator (DFIG) based wind power system and developes a simulation model of DFIG by using PSCAD/EMTDC. In addition, this paper analyzes the steady state operation and the transient operation during the voltage sags in the power common coupling. The voltage sags are occurred by three phase line-to-ground faults and full-voltage startup of an induction motor in the simulation.

  • PDF

파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성 (Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation)

  • 정성수;정완섭;신수현;전세종;최용문;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • 제31권2호
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

동력저장장치가 적용된 복합발전시스템의 개발 (Development of combined generation systems that power storage apparatus is applied)

  • 이정일;서장수;강병복;차인수
    • 전기학회논문지P
    • /
    • 제51권4호
    • /
    • pp.169-174
    • /
    • 2002
  • The developments of the solar and the wind power energy are neccessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of existing problems, combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.

그린에너지 활용을 위한 대학건물 옥상설치형 소형풍력발전 (Small Wind Turbine Installed at the University Building Rooftop for Green Energy Utillization)

  • 이유석;김재용
    • 신재생에너지
    • /
    • 제10권3호
    • /
    • pp.14-21
    • /
    • 2014
  • As the world supply of fossil fuel sources decreases, the need for efficient energy consevation and develping green energy technologies becomes critical. Because of the high cost of the foundation for large turbines and optional high wind speed (over 12 m/s), it is very difficult to be located at inland city. For the solution above mentioned problem, we have been experimented about that not only using the adaption of wind power system on buildings for improving turbine efficiency, but also applying a wound rotor type induction generator for a small wind turbine.In this research, we try to find out the wind direction and wind speed those were measured every 1 min., during operation period, using the anemometers which consist of horizontally spinning cups on a vertical post. Performance testing for small wind turbine generating system was carried out by using the induction motor and invertor. Finally, we measured the power of 1 kW wind turbine system with the clamp meter and a voltmeter.

자동 지령모드절환 기능을 갖춘 PMSG MV 해상 풍력 발전기의 직접전력제어 방법 (Automatic Command Mode Transition Strategy of Direct Power Control for PMSG MV Offshore Wind Turbines)

  • 권국민;서용석
    • 전력전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.238-248
    • /
    • 2016
  • In this study, an automatic command mode transition strategy of direct power control (DPC) is proposed for permanent magnet synchronous generators (PMSGs) medium-voltage (MV) offshore wind turbines (WTs). Benchmarking against the control methods are performed based on a three-level neutral-point-clamped (NPC) back-to-back type voltage source converter (VSC). The ramping rate criterion of complex power is utilized to select the switching vector in DPC for a three-level NPC converter. With a grid command and an MPPT mode transition strategy, the proposed control method automatically controls the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. The automatic command mode transition strategy of DPC is confirmed through PLECS simulations based on Matlab. The simulation result of the automatic mode transition strategy shows that the proposed control method of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control methods of MPPT and VOC under a step response. The proposed control method helps provide a good dynamic performance for PMSGs MV offshore WTs, thereby generating high quality output power.

전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (1) - 전자기 전달관계 기법을 이용한 자계특성해석 및 회로정수 도출 - (Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (1) - Magnetic Field Analysis and Electrical Parameters Derivation using Electromagnetic Transfer Relations Theorem -)

  • 장석명;고경진;최장영
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2179-2189
    • /
    • 2010
  • This paper deals with analytical techniques for performance evaluation of small scaled wind power generator with outer permanent magnet rotor. In part (1), using transfer relations theorem, magnetic field distribution characteristics by PM and armature reaction field are derived. Moreover, electrical parameters such as back-EMF, inductance and resistance are calculated from the obtained field characteristic equations. The proposed analytical techniques are validated by nonlinear finite element method using commercial software 'Maxwell' and performance experiments of the manufactured generator. In part (2), generating characteristics analysis such as constant speed characteristics and constant resistive load characteristics, and performance evaluation according to variation of wind speed will be accomplished using the derived electrical parameters.

SMR 회로를 이용한 소형풍력발전 시스템의 센서리스 퍼지 MPPT제어 (Sensorless Fuzzy MPPT Control for a Small-scale Wind Power Generation System with a Switched-mode Rectifier)

  • 이준민;박민기;김영석
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.916-923
    • /
    • 2014
  • This paper proposes a low-cost switched-mode rectifier (SMR) for a small-scale wind turbine with a permanent magnet synchronous generator (PMSG) system. Also, a sensorless Fuzzy MPPT control is realized by the proposed system. In the PMSG system with the SMR, the synchronous impedance can be replaced as the input inductor of a boost converter. Moreover, the sensorless MPPT control using the Fuzzy technique is carried out by the duty-ratio regulation of the SMR. The relation between the generating power and the duty-ratio is ruled by the chain rule. The wind turbine model is implemented by the squirrel cage induction motor and generated the variable torque when the generator speed is varied. To verify the performance of the proposed system, simulation and experimental results are executed.

계통연계형 직렬운전 소형풍력발전시스템의 해석 및 운전방안 연구 (The Analysis and Study on Operation Strategy of Grid-connected Series Small Wind Turbine System)

  • 김창하;구현근;손영득;김장목
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.59-64
    • /
    • 2015
  • This paper proposes an analysis and operation strategy of a grid-connected wind turbine system using a diode rectifier. The currents of generators are the same as that of a small wind turbine system. Therefore, the analysis of generator torque is required as opposed to an analysis of blade speed. In this paper, the appropriate MPPT control method is proposed to control generator torque. Usefulness of the proposed operation strategy is verified by simulations and experiments.

횡류형 파워 터빈(CPT)에서 솔리디티 영향에 관한 수치해석 연구 (A Numerical Study on Solidity Characteristics of the Cross-flow Power Turbine(CPT))

  • 정광섭;김철호
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.562-566
    • /
    • 2010
  • Wind energy is one of the most general natural resources in the world. However, as of today, generating electricity out of wind energy is only available from big wind generator, Furthermore, an axial-flow turbine is the only way to produce electricity in the big wind generator. This paper is for the guidance of drawing impact fact about power turbine using cross-flow type transferring wind energy to electricity energy. It will find the ideal value which enables to make cross-flow power turbine(CPT) using computational fluid dynamics(CFD) code. This study tries to analyze the "Solidity" characteristics. We can find out turbine-blade number through CFD. CFD is using "Fluent_ver 6.3.16", and the data from its result will judge fan-blade performance through specific torque and specific power from each "Solidity" model. Based upon the above, we will make cross-flow power turbine of multi-blade centrifugal fan instead of axial-flow type.