• Title/Summary/Keyword: Wind power conversion

Search Result 137, Processing Time 0.026 seconds

Development of Battery Simulator for Performance Verification of MW-class PCS (MW급 PCS 성능검증용 배터리 모의장치 개발)

  • Lee, Jong-Hak;In, Dong-Seok;Heo, Nam-Eok;Park, Young-Min;Park, Ki-Won;Kwon, Byung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.160-167
    • /
    • 2016
  • An energy storage system (ESS) is applied to increase the energy efficiency of large plants or buildings that consume much energy, to improve the power quality of power systems, and to stabilize renewable energy source such as photovoltaic or wind turbine. The ESS is composed of a power conditioning system (PCS) and an energy storage. The battery is used as the energy storage. The battery is needed to design and verify a hardware and control system of PCS. Usually, a battery simulator is used instead of a battery, which is costly and hard to manage. In this paper, the development of the battery simulator for performance verification of the MW-class PCS is described. The battery simulator simulates the charging and discharging characteristics of batteries to design and verify the hardware and control system of PCS.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

Technical Tasks and Development Current Status of Organic Solar Cells (유기 태양전지의 개발 현황과 기술 과제)

  • Jang, Ji Geun;Park, Byung Min;Lim, Sungkyoo;Chang, Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.434-442
    • /
    • 2014
  • Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

Development of MW Wind Power Conversion System (MW급 풍력발전기용 전력변환장치 개발)

  • Moon, Joon-sun;Kwak, Sang-hyun;Choi, Mi-seon;Oh, Yong-Seung;Ahn, Kang-Soon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.527-528
    • /
    • 2011
  • 본 논문에서는 고전력 밀도 및 고효율을 목표로 한 MW급 풍력발전용 전력변환장치 시스템을 제안한다. 이 시스템은 스텍을 병렬로 구성하여 시스템의 전체 효율을 높였으며 LCL 필터 및 수냉식 방열 방식을 사용하여 시스템의 사이즈를 줄임으로서 전력밀도를 향상시켰다. 제안된 시스템의 타당성을 검증하기 위하여 500kW급 스텍 4병렬을 이용하여 MW급 풍력발전 전력변환 장치 시스템을 제작 및 실험하였다.

  • PDF

500kW Wind Power Conversion System Development (500kW 풍력발전용 전력변환장치 시스템 개발)

  • Choi, Mi-seon;Kwak, Sang-hyun;Moon, Joon-sun;Oh, Yong-Seung;Ahn, Kang-Soon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.529-530
    • /
    • 2011
  • 본 논문에서는 대용량 및 장거리 송전을 위한 풍력발전용 MVDC 전력변환 시스템을 제안한다. 이 시스템은 컨버터, 인버터, DC Link, LC필터로 구성되어 있으며 풍력 발전기에서 발생되는 전압을 컨버터가 동작하여 DC 2000V로 제어한다. 변환된 DC Link의 전압은 인버터에서 AC 380V로 변환하여 계통에 연계된다. 제안된 방식의 타당성 검증하기 위해 500[kW]급 풍력발전용 인버터를 제작 및 실험하였다.

  • PDF

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.

Design and Implementation of Power Storage and Conversion Circuit for Continuous Operation of Stand-Alone Type Wind Power Generation System (소형 풍력 발전시스템의 연속 독립운전을 위한 전력 저장 및 변환 장치의 설계 및 구현)

  • Song, Seung-Ho;Rho, Do-Hwan;Kim, Dong-Yong;Shin, Chan;Oh, Young-Jin;Kim, Sung-Ju;Lee, Nae-Chel
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.343-345
    • /
    • 2001
  • 새로운 대체 에너지원으로 주목받고 있는 풍력 에너지의 효율적인 이용을 위하여 기개발되어 운용중인 30kW급 수직-수평축 통합형 풍력발전시스템을 대상으로 낙도 지역 등에서 사용할 수 있는 독립형 전원장치를 설계하였다. 설계된 시스템은 무보수 밀패형 배터리와 자체 개발한 배터리 충전 제어 장치 및 교류 전원 출력용 인버터로 구성되며 장시간 바람이 불지 않는 경우에도 양질의 전원을 연속적으로 부하에 공급할 수 있도록 설계되었다.

  • PDF

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.

Advanced Control of a PWM Converter with a Variable-Speed Induction Generator

  • Ahmedt, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo;Tanaka, Toshihiko
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.97-108
    • /
    • 2007
  • This paper describes simple control structures for a vector controlled stand-alone induction generator (IG) for use under variable speeds. Different control principles, indirect vector control and deadbeat current control, are developed for a voltage source PWM converter and the three-phase variable speed squirrel-cage IG to regulate DC-link and generator voltages with a newly designed phase locked loop circuit. The required reactive power for the variable speed IG is supplied by means of a PWM converter and a capacitor bank to buildup the voltage of the IG without the need for a battery, to reduce the rating of the PWM converter while using only three sensors and to eliminate the harmonics generated by the PWM converter. These proposed schemes can be used efficiently for variable speed wind energy conversion systems. The measurements of the IG systems at various speeds and loads are given and show that these systems are capable of good AC and DC voltage regulation.