• 제목/요약/키워드: Wind Vibration

검색결과 994건 처리시간 0.022초

지진 관측을 위한 최적 설치심도 조사 방법 연구 (Finding Optimal Installation Depth of Strong Motion Seismometers for Seismic Observation)

  • 정석호;임도윤;황의홍;안재광
    • 한국지반환경공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.31-40
    • /
    • 2023
  • 본 연구는 고밀도 지진 관측망 구축 시 지표 가속도 측정 및 조기경보 활용을 위한 효율적 관측소 설치 방법을 수립하기 위하여 테스트베드에 지표, 1m, 2m, 9m 깊이의 임시관측소를 설치하여 상시 잡음, 인공 가진 신호 및 지진 계측 자료의 깊이별 변화를 분석하였다. 연구대상지의 상시 잡음 분석 결과 1s 이하의 단주기 영역은 주변의 인위적 잡음이 우세하였으며, 1s 이상 장주기 영역은 풍속의 변동과 큰 상관성을 보였다. 2차원 지진계 배열을 통한 상시 잡음 진동수-파수(FK) 분석 결과 단주기 상시 잡음은 표면파 보다는 주로 체적파의 형태로 유입되는 것으로 추정된다. 잡음 수준 분석 결과 9m 이하에서는 낮은 수준의 상시 잡음이 관측되었으나, 지표, 1m, 2m 지진계에서는 토사층의 동적 거동에 의해 T < 0.1s에서 잡음의 증폭이 발생하는 것을 확인하였다. 인공 가진실험 및 괴산지진 계측 자료 분석 결과 전반적으로 깊이가 깊어질수록 신호의 크기가 감소함을 확인하였으며, 스펙트럼비 및 응답스펙트럼 분석 결과 지표와 1m에서 3m 깊이 토사층의 고유진동수에 해당하는 20Hz(T=0.05s) 대역의 지반운동이 크게 증폭되는 것으로 나타났다. 본 연구 결과 상시미동과 가진실험을 통해 대상구간의 관측환경을 조사하여 지진계 설치 방법 및 깊이 선정시 활용할 수 있는 것으로 나타났으며, 향후 다수의 지역에서 다양한 환경을 고려한 연구가 진행된다면 관측소 설치 깊이, 설치방법, 환경 조사방법에 대한 가이드라인을 제시하는데 큰 도움이 될 것으로 기대된다.

이동형 대하중 추적 마운트의 구조 건전성에 대한 연구 (A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount)

  • 김병인;손영수;박철훈;이성휘;함상용;조상현
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.

대형 레이더 기계구조부 개발 절차 (Development Process of Mechanical Structure for a Large Radar)

  • 신동준;이종학;강영식
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, design requirements of the large radar were investigated, and development was performed through the analysis and design. Large radar should be designed by bearing the 75 knot wind force and $20kg/m^2$ ice mass as operating conditions in order to meet structural stability, and driving torque and bearing load were calculated for securing the driving stability. Thermal dissipation analysis was performed considering TRM and DC-DC Converter's limitation temperature by $50^{\circ}C$ ambient temperature condition in order to attain thermal stability, and PSD and shock analysis were carried out by using MIL-STD-810G vibration and shock specification in order to transport and installation of the large radar. As a result, all components of large radar could secure the structural stability more than 2.8 factor of safety, and driving stability was also secured with adequate bearing fatigue life. Thermal stability was attained by allowable max temperature 88.7 C of the TRM, and structural stability for transportation and installation of the large radar was also secured more than 5 factor of safety. After it was transported and installed to the radar site, operating capability was finally verified by rotating the large radar.

단독 원기둥 주위의 후류유동에 관한 연구 (Study of the Wake Flow Around a Circular Cylinder)

  • 이재성;김상일;승삼선
    • 대한기계학회논문집B
    • /
    • 제39권11호
    • /
    • pp.891-896
    • /
    • 2015
  • 본 연구는 탄성지지된 단독원기둥의 후류에 관한 실험적연구이다. 본 실험은 $1.4{\times}10^4{\leq}Re{\leq}3.2{\times}10^4$의 레이놀즈수 범위에서 이루어졌으며, 원기둥 후류의 위치별 유속을 측정하여 후류에서 발생되는 와류의 생성에서 소멸까지의 과정 및 와류의 이동 궤적을 조사한 연구이다. 아울러 강제진동실험장치를 이용한 가시화실험을 통하여 풍동실험에서의 결과를 증명하였다. 그 결과 다음과 같은 결과를 얻었다. 1) 흐르는 유체에 존재하는 원기둥의 후류에 생성되는 와류의 생성${\rightarrow}$성장${\rightarrow}$소멸 과정을 확인 할 수 있었다. 2) 와류의 퍼짐각도는 $16^{\circ}{\sim}17^{\circ}$가량으로 주류속의 변화와 유력진동의 유무에 상관없이 일정하다. 3) 후류에서 변동 유속의 스펙트럼 분석을 통해 와류의 중심이 이동하는 궤적을 유추할 수 있었고, 가시화 실험을 통해 그것을 확신할 수 있다.

Flow structures around rectangular cylinder in the vicinity of a wall

  • Derakhshandeh, J.F.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제26권5호
    • /
    • pp.293-304
    • /
    • 2018
  • A numerical study is conducted on the flow characteristics of a rectangular cylinder (chord-to-width ratio C/W = 2 - 10) mounted close to a rigid wall at gap-to-width ratios G/W = 0.25 - 6.25. The effects of G/W and C/W on the Strouhal number, vortex structure, and time-mean drag and lift forces are examined. The results reveal that both G/W and C/W have strong influences on vortex structure, which significantly affects the forces on the cylinder. An increase in G/W leads to four different flow regimes, namely no vortex street flow (G/W < 0.75), single-row vortex street flow ($0.75{\leq}G/W{\leq}1.25$), inverted two-row vortex street flow ($1.25<G/W{\leq}2.5$), and two-row vortex street flow (G/W > 2.5). Both Strouhal number and time-mean drag are more sensitive to C/W than to G/W. For a given G/W, Strouhal number grows with C/W while time-mean drag decays with C/W, the growth and decay being large between C/W = 2 and 4. The time-mean drag is largest in the single-row vortex street regime, contributed by a large pressure on the front surface, regardless of C/W. A higher C/W, in general, leads to a higher time-mean lift. The maximum time-mean lift occurs for C/W = 10 at G/W = 0.75, while the minimum time-mean lift appears for C/W = 2 at the same G/W. The impact of C/W on the time-mean lift is more substantial in single-row vortex regime. The effect of G/W on the time-mean lift is larger at a larger C/W.

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

지진 하중에 대한 동조액체감쇠기 성능 수치해석 검토 (Seismic Performance of SDF Systems with Tuned Liquid Damper Subjected to Ground Motions)

  • 한상환;오승보;하성진
    • 한국전산구조공학회논문집
    • /
    • 제29권3호
    • /
    • pp.261-268
    • /
    • 2016
  • 동조액체감쇠기(TLD)는 에너지 소산장치로써 구조물의 동적응답을 제어하기 위해 개발되었다. TLD는 풍하중에 의한 구조물의 응답을 제어에 매우 효과적임을 보여줬다. 그러나 TLD가 설치된 구조물의 지진응답의 제어에 대해서는 충분한 연구가 이뤄지지 않았다. 이 연구의 목적은 TLD가 설치된 구조물에 여러 동조비와 질량비를 대입하여 지진에 대한 TLD의 성능을 도출하는 것이다. 이러한 목적을 위해, 수치해석 연구가 실시되며, 다른 토양 조건 또한 고려되었다. 그 결과 지진하중에 대한 TLD의 성능은 구조물의 고유주기, 감쇠비에 따라 다르게 나타났다. 또한 TLD의 동조비 다르게 나타남을 알 수 있었다.

Aerodynamics of a cylinder in the wake of a V-shaped object

  • Kim, Sangil;Alam, Md. Mahbub;Russel, Mohammad
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.143-155
    • /
    • 2016
  • The interaction between two different shaped structures is very important to be understood. Fluid-structure interactions and aerodynamics of a circular cylinder in the wake of a V-shaped cylinder are examined experimentally, including forces, shedding frequencies, lock-in process, etc., with the V-shaped cylinder width d varying from d/D = 0.6 to 2, where D is the circular cylinder diameter. While the streamwise separation between the circular cylinder and V-shaped cylinder was 10D fixed, the transverse distance T between them was varied from T/D = 0 to 1.5. While fluid force and shedding frequency of the circular cylinder were measured using a load cell installed in the circular cylinder, measurement of shedding frequency of the V-shaped cylinder was done by a hotwire. The major findings are: (i) a larger d begets a larger velocity deficit in the wake; (ii) with increase in d/D, the lock-in between the shedding from the two cylinders is centered at d/D = 1.1, occurring at $d/D{\approx}0.95-1.35$ depending on T/D; (iii) at a given T/D, when d/D is increased, the fluctuating lift grows and reaches a maximum before decaying; the d/D corresponding to the maximum fluctuating lift is dependent on T/D, and the relationship between them is linear, expressed as $d/D=1.2+{\frac{1}{e}}T/D$; that is, a larger d/D corresponds to a greater T/D for the maximum fluctuating lift.