• Title/Summary/Keyword: Wind Vibration

Search Result 994, Processing Time 0.02 seconds

Wind tunnel experiments of a building model incorporating viscous-damping walls

  • Pan, Austin D.E.;Yeung, Ngai
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.261-276
    • /
    • 2001
  • This paper presents an experimental study on the effectiveness of viscous-damping walls in controlling the wind-induced vibrations of a building model. A simple four-story building model, square in plan, was constructed for wind tunnel study. In this paper the description of the model, its instrumentation, and the experimental set-up and methodology are reported. The effectiveness of viscous-damping walls in reducing vibrations was investigated for different fluid levels in the walls, and at varying wind speeds and attack angles. The results show that viscous-damping walls are highly effective in most cases.

An Study KS Standardization for Acoustic noise measurement of the Wind Turbine (풍력발전시스템 소음평가의 KS 규격화에 관한 연구)

  • Son, C.Y.;Kim, J.H.;Oh, D.H.;Park, J.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.406-410
    • /
    • 2005
  • The wind turbine, Europe and the United States are different with the standards process each other when the manufacturing company which in order to demand the standards process to a construction in the multi country with interested parties of the corresponding nation to, always the re-agreement is difficult. Korean wind turbine also detail there is not a standard, when it produces and establishes of wind turbine, the problem point occurs. It is like that investigation of international standards system it leads and when it prepares the Acoustic noise measurement of the Wind Turbine Systems of Korea, it prepares the base for industrial development wind turbine of Korea.

  • PDF

A simple procedure to evaluate the wind-induced acceleration in tall buildings: an application to Mexico

  • Pozos-Estrada, Adrian
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.337-345
    • /
    • 2018
  • Tall buildings are subjected to wind loading that can cause excessive wind-induced vibration. This vibration can affect the activities of the inhabitants of a building and in some cases fear for safety. Many codes and standards propose the use of curves of perception of acceleration that can be used to verify the serviceability limit state; however, these curves of perception do not take into account the uncertainty in wind-climate, structural properties, perception of motion and maximum response. The main objective of this study is to develop an empirical expression that includes these uncertainties in order to be incorporated into a simple procedure to evaluate the wind-induced acceleration in tall buildings. The use of the proposed procedure is described with a numerical example of a tall building located in Mexico.

Direct identification of aeroelastic force coefficients using forced vibration method

  • Herry, Irpanni;Hiroshi, Katsuchi;Hitoshi, Yamada
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.323-336
    • /
    • 2022
  • This study investigates the applicability of the direct identification of flutter derivatives in the time domain using Rational Function Approximation (RFA), where the extraction procedure requires either a combination of at least two wind speeds or one wind speed. In the frequency domain, flutter derivatives are identified at every wind speed. The ease of identifying flutter derivatives in the time domain creates a paradox because flutter derivative patterns sometimes change in higher-order polynomials. The first step involves a numerical study of RFA extractions for different deck shapes from existing bridges to verify the accurate wind speed combination for the extraction. The second step involves validating numerical simulation results through a wind tunnel experiment using the forced vibration method in one degree of freedom. The findings of the RFA extraction are compared to those obtained using the analytical solution. The numerical study and the wind tunnel experiment results are in good agreement. The results show that the evolution pattern of flutter derivatives determines the accuracy of the direct identification of RFA.

Evaluation of Wind-Induced Vibration for Multiple Stacks Using Numerical Analysis (전산 해석을 이용한 다중연돌의 유체유발진동)

  • Yang, Kwangheok;Park, Chaegwan;Kim, Hyeonjoon;Baek, Songyoul;Park, Soontae
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • Wind-induced vibration is a phenomenon that a struture is oscillated due to wind force such as buffeting, vortex shedding wake and etc., which is one of important characteristics to be considered for design in case that stack has significant slenderness ratio or low natural frequency. International design standards of stack define several criteria for evaluating the suitability of stack design, which describe the required design considerations for each range of design parameters and provide the instruction to verify the stack design against wind-induced vibration simply. However, there is a limitation that they cannot provide quantitative information in case code requirement cannot be satisfied due to constraints of plant space or economical design. In order to overcome the limiation of code, integrated numerical analysis of computational fluid dynamics, harmonic analysis and finite element analysis were proposed to investigate wind-induced vibration for multiple stacks in actual plant. Simulated results of mutual wake interference effect between adjacent stacks were evaluated and compared to the criteria in international standards.

  • PDF

Mitigation of wind-induced vibrations of bridge hangers using tuned mass dampers with eddy current damping

  • Niu, Huawei;Chen, Zhengqing;Hua, Xugang;Zhang, Wei
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.727-741
    • /
    • 2018
  • To mitigate vibrations, tuned mass dampers(TMD) are widely used for long span bridges or high-rise buildings. Due to some durability concerns, such as fluid degradation, oil leakage, etc., the alternative solutions, such as the non-contacted eddy current damping (ECD), are proposed for mechanical devices in small scales. In the present study, a new eddy current damping TMD (ECD-TMD) is proposed and developed for large scale civil infrastructure applications. Starting from parametric study on finite element analysis of the ECD-TMD, the new design is enhanced via using the permanent magnets to eliminate the power need and a combination of a copper plate and a steel plate to improve the energy dissipation efficiency. Additional special design includes installation of two permanent magnets at the same side above the copper plate to easily adjust the gap as well as the damping. In a case study, the proposed ECD-TMD is demonstrated in the application of a steel arch bridge to mitigate the wind-induced vibrations of the flexible hangers. After a brief introduction of the configuration and the installation process for the damper, the mitigation effects are measured for the ambient vibration and forced vibration scenarios. The results show that the damping ratios increase to 3% for the weak axis after the installation of the ECD-TMDs and the maximum vibration amplitudes can be reduced by 60%.

Advanced approach to design of small wind turbine support structures

  • Ismar, Imamovic;Suljo, LJukovac;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.525-542
    • /
    • 2022
  • In this work we present an advanced approach to the design of small wind turbine support steel structures. To this end we use an improved version of previously developed geometrically exact beam models. Namely, three different geometrically exact beam models are used, the first two are the Reissner and the Kirchhoff beam models implementing bi-linear hardening response and the third is the Reissner beam capable of also representing connections response. All models were validated in our previous research for a static response, and in this work they are extended to dynamic response. With these advanced models, we can perform analysis of four practical solutions for the installation of small wind turbines in new or existing buildings including effects of elastoplastic response to vibration problems. The numerical simulations confirm the robustness of numerical models in analyzing vibration problems and the crucial effects of elastoplastic response in avoiding resonance phenomena.

Stability Analysis of a Wind Turbine Blade Considering Wind Force and Variation of Pitch Angle (풍 하중과 Pitch각 변화에 따른 풍력 터빈 블레이드의 안정성 해석)

  • Kwon, Seung Min;Kang, Moon Jeong;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1164-1171
    • /
    • 2012
  • Recently, researches related to the green energy generation systems have increased significantly. Among them wind turbines are the most spread practical green energy generation systems. In order to enhance the power generation capacity of the wind turbine blade, the length of wind turbine blade has increased. It might cause undesirable excessive dynamic loads. Therefore dynamic characteristics of a wind turbine blade system should be identified for a safe design of the system. In this study, the equations of motion of a wind turbine blade system undergoing gravitational force are derived considering wind force and pitch angle. Effects of wind speed, variation of pitch angle of the wind turbine blade, rotating speed, and the blade length on its stability characteristics are investigated.

Wind-induced lateral-torsional coupled responses of tall buildings

  • Wu, J.R.;Li, Q.S.;Tuan, Alex Y.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.153-178
    • /
    • 2008
  • Based on the empirical formulas for power spectra of generalized modal forces and local fluctuating wind forces in across-wind and torsional directions, the wind-induced lateral-torsional coupled response analysis of a representative rectangular tall building was conducted by setting various parameters such as eccentricities in centers of mass and/or rigidity and considering different torsional to lateral stiffness ratios. The eccentricity effects on the lateral-torsional coupled responses of the tall building were studied comprehensively by structural dynamic analysis. Extensive computational results indicated that the torsional responses at the geometric center of the building may be significantly affected by the eccentricities in the centers of mass and/or rigidity. Covariance responses were found to be in the same order of magnitude as the along-wind or across-wind responses in many eccentricity cases, suggesting that the lateral-torsional coupled effects on the overall wind-induced responses can not be neglected for such situations. The calculated results also demonstrated that the torsional motion contributed significantly to the total responses of rectangular tall buildings with mass and/or rigidity eccentricities. It was shown through this study that the framework presented in this paper provides a useful tool to evaluate the wind-induced lateral-torsional coupled responses of rectangular buildings, which will enable structural engineers in the preliminary design stages to assess the serviceability of tall buildings, potential structural vibration problems and the need for a detailed wind tunnel test.

Evaluation of Aerodynamic Performance of Solar Wing System (솔라윙 시스템의 풍진동 특성 평가)

  • Kim, Yong Chul;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • Aerodynamic performance of solar wing system has been evaluated through wind tunnel test. The test model has 12 panels, each supported by 2 cables. The panels were installed horizontally flat, and gaps between panels were set constant. Sag ratios of 2% and 5%, and wind directions between $0^{\circ}$ and $90^{\circ}$ were considered. Mass of test model was determined considering the mass of full scale model, and Froude number and Elastic parameter were satisfied by adjusting the mean wind speed. From the wind tunnel test, it was found that the aerodynamic performance of the solar wing system is very dependent on the wind directions and sag ratios. When the sag was 2%, the fluctuating displacements between the wind directions of $0^{\circ}$ and $30^{\circ}$ increase proportionally to the square of the mean wind speed, implying buffeting-like vibration and a sudden increase in fluctuating displacement was found at large mean wind speed for the wind directions larger than $40^{\circ}$. When the wind direction was larger than $60^{\circ}$, a sudden increase was found both at low and large mean wind speed. When the sag ratio is 5%, distribution of mean displacements is different from that of sag ratio of 2%, and the fluctuating displacements show very different trend from that of sag ratio of 2%.