• Title/Summary/Keyword: Wind Turbine Test

Search Result 329, Processing Time 0.025 seconds

A Power Quality Monitoring of The Grid-connected Wind Turbine in Daegwallyeong Test Site (계통 연계 대관령 풍력실증단지에서의 전력 품질 모니터링)

  • Kwon H. J.;Kim K. H.;Jang S. I.;Yoo N. S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1513-1515
    • /
    • 2004
  • This paper describe the power quality monitoring results of the grid-connected wind turbine generator in Daegwallyeong Test Site. The power quality monitoring for grid-connected wind turbine generators are important to verify their performance as the grid-connected generators. In order to measure the impacts on the grid of wind turbine generator and evaluate the performance by analyzing electrical parameters, we equipped the power quality monitoring system in the real field of the Daegwallyeong test site. The developed monitoring system gathers information by remote access through the internet. The monitoring results and the detail explanation for the developed wind turbine monitoring system is presented in the study.

  • PDF

750kW Gearless Type Wind Turbine Generator System (750kW급 Gearless형 국산화 풍력발전시스템)

  • Ryu, Ji-Yoon;Park, Jin-Il;Kim, Dae-Hyun;Hwang, Jin-Su;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.245-248
    • /
    • 2006
  • The first of korean 750kW gearless type wind turbine is developed. The wind turbine is designed, manufactured and tested by GE regulation and obtained the design certificate by GL. And the performance test is being performed at the demonstration site now. This paper presents the history of development and performance test for 750kW gearless type wind turbine.

  • PDF

Model test of an inverted conical cylinder floating offshore wind turbine moored by a spring-tensioned-leg

  • Shin, Hyunkyoung;Cho, Sangrai;Jung, Kwangjin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • A new 5-MW floating offshore wind turbine moored by a spring-tensioned-leg was proposed for installation in about 50m water depth. Its substructure is a platform of the inverted conical cylinder type with massive ballast weight plate at the bottom. A 1:128 scale model was built for the preliminary engineering development. The model tests in waves and wind were carried out to estimate motion characteristics of this platform in the Ocean Engineering Wide Tank of the University of Ulsan. Its motions were measured and the RAOs were compared. The proposed floating offshore wind turbine showed a good stability and decent responses in waves, wind and operation of the wind turbine.

Site Calibration for the Wind Turbine Performance Evaluation

  • Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jung-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2250-2257
    • /
    • 2004
  • The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several methods on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the TaeKwanRyung test site are presented using three-month wind data from a reference meteorological mast and the other mast temporarily installed at the site of wind turbine. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed.

Selection of Available Sector to Measure Power Generation for Validation of Wind Turbine Performance (풍력터빈 성능 검증을 위한 출력측정 유효영역 선정)

  • Oh, Ki-Yong;Jun, Hoon;Lee, Jun-Shin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.525-528
    • /
    • 2009
  • Power generation of wind turbine which is installed in wind farm should be measured to predict economic feasibility of wind farm. Also electric power company want to verify wind turbine performance which is stated by manufacturer. The International Electrotechnical Commission(IEC) published 61400-12-1 "Power performance measurements of electricity producing wind turbines" for test of wind turbine power performance. In this paper, measurable sector of wind speed is analysed based on IEC 61400-12-1 to verify power curve of wind turbine with various wind turbine in wind farm.

  • PDF

Loading Test Results of Wind Turbine Pitch/Yaw Bearing (풍력발전기용 피치/요 베어링의 하중 시험 결과)

  • Nam, Ju-Seok;Kim, Heung-Sub;Lee, Young-Soo;Han, Jeong-Woo
    • Journal of Wind Energy
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The loading test of wind turbine pitch and yaw bearings have been conducted using special test rig designed for the test of large slewing bearings. Test type was fatigue test that applied fatigue load to each bearing and followed the defined test process. Measurement data during test were rotational torque and raceway temperature, and inspected key components by disassembling the bearing after all test finished. As a results, the raceway temperature during test did not exceed the operational temperature range of lubricant and rotational torque was reduced as the bearing's rotational cycle increased. In the inspection of key components, some plastic deformation and flaking were detected at some raceway sections while other components such as ball, spacer and seal remain indefective conditions.

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

The Field Test of Power Performance Measurement for U50 Wind Turbine (U50 풍력발전기 출력성능 실증연구)

  • Hwang, Jin-Su;Jang, Seong-Tae;Kim, Dae-Hyun;Bang, Jo-Hyug;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.372-375
    • /
    • 2007
  • 750kW gearless type wind turbine, named U50, is developed by UNISON in Korea. The newly developed wind turbine should be evaluated the power curve and the estimated annual energy production by following international standard to verify the power performance characteristics. This paper shows the test and evaluation procedure according to IEC 61400-12-1 which specifies a procedure of measuring the power performance characteristics of a single wind turbine and applies to the testing of wind turbines of all types and sized connected to the electrical power network. And this paper also shows the power performance characteristics for U50 wind turbine which is determined in accordance with IEC regulation.

  • PDF

Model Test of a TLP Type of Floating Offshore Wind Turbine, Part II

  • Dam, Pham Thanh;Seo, Byoung-Cheon;Kim, Jae-Hun;Shin, Jae-Wan;Shin, Hyunkyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.2-38.2
    • /
    • 2011
  • A large number of offshore wind turbines with fixed foundations have been installed in water depths up to 30 meters supporting 3-5MW wind turbines. Some floating platform concepts of offshore wind turbines were designed to be suitable for deployment in water depths greater than 60 meters. However the optimal design of this system in water depth 50 meters remains unknown. In this paper, a 5-MW wind turbine located on a TLP type platform was suggested for installation in this water depth. It is moored by a taut mooring line. For controlling the wind turbine always be operated at the upwind direction, one yaw controlling was attached at the tower. To study motion characteristics of this platform, a model was built with a 1/128 scale ratio. The model test was carried out in various conditions, including waves, winds and rotating rotor effect in the Ocean Engineering Wide Tank of the University Of Ulsan (UOU). The characteristic motions of the TLP platform were captured and the effective RAOs were obtained.

  • PDF

Establishment of Remote Monitoring System for Wind Turbine Test Sites Based on Hierarchical Architecture (계층적 구조를 갖는 풍력발전 실증단지 원격 풍황 모니터링 시스템 구축)

  • Cho, Byung-Ha;Lee, Jeong-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.81-87
    • /
    • 2009
  • In this paper, remote monitoring system for wind turbine site is developed. This system is a hierarchical reliable monitoring system connected by wireless communication channels between monitoring host computer and modular slave measuring subsystems. The design of this systems; the slave measuring subsystems is placed in meteorological tower and wind turbine, and the supervisory host computer is in the safety zone. The slave measuring subsystems signals are from a meteorological tower, wind turbine generator and tower. For monitoring and command function, the supervisory computer is implemented with a PC using graphic user interface. This system can be transferred the information among host computer and remote computers through the Ethernet. Consequently we can get reliability but economic system. The system has the concept of universality and modularity, so it is simple and easy to implement in wind turbine test sites.