• 제목/요약/키워드: Wind Turbine Blade Airfoil

검색결과 60건 처리시간 0.029초

MW급 풍력 Blade의 Field수리로 인한 Airfoil의 형상 변형에 따른 공력특성 (The Aerodynamic Characteristics of Shape Deformation of Airfoil according to Field Repair of MW-Class Wind Turbine Blade)

  • 유홍석;이장창
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.654-658
    • /
    • 2014
  • 풍력발전은 재생에너지로써 유망한 대체 에너지원으로 각광받고 있으며, 국내에서는 이미 영덕, 영양 등의 풍력단지가 가동 중에 있다. 그러나 장기간 사용되어온 터빈이 반 이상이며, 그 중에서도 바람의 영향을 많이 받는 블레이드는 끝단 Tip이 벌어지는 파손이 발생하곤 한다. Blade Field의 유지보수를 통해 수명연장이 가능하나, 형상변화로 공력특성에 영향을 미치게 된다. 본 연구에서는 MEXICO 터빈용 블레이드의 Tip부분에 대해서 EDISON을 활용하여, 수리로 인해 변경된 Blade의 공력특성 변화를 분석하였다. 형상변경은 상용 프로그램 Pontwise로 작업했으며, 익형 주위의 유동을 2D비압축성 유동으로 가정하고 EDISON CFD의 2D_Incomp-2.1_P solver를 수치해석을 수행하였다.

  • PDF

Aerodynamic assessment of airfoils for use in small wind turbines

  • Okita, Willian M.;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.35-54
    • /
    • 2019
  • A successful blade design must satisfy some criterions which might be in conflict with maximizing annual energy yield for a specified wind speed distribution. These criterions include maximizing power output, more resistance to fatigue loads, reduction of tip deflection, avoid resonance and minimize weight and cost. These criterions can be satisfied by modifying the geometrical parameters of the blade. This study is dedicated to the aerodynamic assessment of a 20 kW horizontal axis wind turbine operating with two possible airfoils; that is $G{\ddot{o}}ttingen$ 413 and NACA 2415 airfoils (the Gottingen airfoil never been used in wind turbines). For this study parameters such as chord (constant, tapered and elliptic), twist angle (constant and linear) are varied and applied to the two airfoils independently in order to determine the most adequate blade configuration that produce the highest annual energy output. A home built numerical code based on the Blade Element Momentum (BEM) method with both Prandtl tip loss correction and Glauert correction, X-Foil and Weibull distribution is developed in Matlab and validated against available numerical and experimental data. The results of the assessment showed that the NACA 2415 airfoil section with elliptic chord and constant twist angle distributions produced the highest annual energy production.

Structural analysis of horizontal axis wind turbine blade

  • Tenguria, Nitin;Mittal, N.D.;Ahmed, Siraj
    • Wind and Structures
    • /
    • 제16권3호
    • /
    • pp.241-248
    • /
    • 2013
  • The wind turbine blade is a very important part of the rotor. Extraction of energy from wind depends on the design of blade. In this work, the analysis is done on a blade of length 38.95 m which is designed for V82-1.65 MW horizontal axis wind turbine (supplied by Vestas). The airfoil taken for the blade is NACA 634-221 which is same from root to tip. The analysis of designed blade is done in flap-wise loading. Two shapes of the spar are taken, one of them is of square shape and the other one is combination of square and cross shape. The blade and spar are of the same composite material. The Finite element analysis of designed blade is done in ANSYS. This work is focused on the two segments of blade, root segment and transition segment. Result obtained from ANSYS is compared with the experimental work.

풍력발전기 블레이드의 에어포일 최적 설계 및 그 적용 연구 (Study on Optimal Design of Wind Turbine Blade Airfoil and Its Application)

  • 선민영;김동용;임재규
    • 대한기계학회논문집B
    • /
    • 제36권5호
    • /
    • pp.465-475
    • /
    • 2012
  • 본 연구는 두 가지 목표를 가지고 수행하였다. 하나는 수치해석과 Design-FOIL Pro.를 이용해 블레이드 에어포일 모델개발이고, 다른 하나는 이 모델을 Folding blade에 적용하는 것이다. 일반적으로 1MW이상 대형풍력터빈용 블레이드는 강풍시에 피칭제어로 풍향에 대해서 평형상태를 유지하여 로터를 회전시키지 않는 방법으로 블레이드의 손상을 방지 하였지만, 소형풍력터빈용 블레이드는 설비비, 유지비등 경제성을 이유로 피칭제어를 채택하지 않아 블레이드의 파손 문제가 심각하다. 그래서 본 연구에서는 유지보수가 필요 없고 강풍에서도 파손이 없는 Spring pack을 이용한 로터를 직접설계(Direct-Design) 방법으로 설계하여, 그 성능을 검증 하고 변화 풍속에 맞는 폴딩각을 이용해 강풍시에도 Wind turbine이 Cut-out 없이 계속발전을 유지할 수 있도록 하는 점에 집중 연구하고자 한다.

수직축 소형 풍력터빈 성능 향상을 위한 로터 형상 개선에 대한 연구 (A Study on the Improvement of the Rotor Shape for Improving Performance of Small Wind Turbine with Vertical Axis)

  • 김찬종;김재운;백인수;김철진
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.37-40
    • /
    • 2017
  • This study was carried out to improve the performance of a vertical-axis micro wind turbine. It is unique in that it has two identical generators on both sides of the main shaft. Also it has a C shape frame to fix the generators and the main shaft firmly and to provide a connection to a tower. Performance analysis of the wind turbine rotor was performed using Qblade, which is an analysis program for vertical axis wind turbines and freeware. Based on the analysis results, the blade airfoil, the chord length, and the rotor size were modified to improve the performance of the rotor. The modification was found to increase the performance of the wind turbine and to reach the targeted rated power.

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어 (Flow Control on Wind Turbine Airfoil with a Vortex Cell)

  • 강승희;김혜웅;유기완;이준신
    • 한국항공우주학회지
    • /
    • 제40권5호
    • /
    • pp.405-412
    • /
    • 2012
  • 높은 효율의 풍력터빈 블레이드을 위해 와류 셀이 장착된 에어포일의 정지상태 및 동실 속 상태에서의 유동제어 특성을 수치적으로 연구하였다. 수치기법은 Roe의 flux-difference-splitting을 사용한 격자점 중심 유한체적법과 이중시간 전진 기법을 사용하는 내재적 시간적분법을 사용하였다. 계산결과 와류 셀을 장착한 경우 셀 내부의 부압으로 인해 양항비증가를 얻을 수 있음을 확인하였다. 동실속의 경우 셀 내부의 와류에 의해 hysterisis 현상을 상당히 감소시킬 수 있음을 확인하였다.

전달 매트릭스를 이용한 풍력 터빈 블레이드의 회전속도에 따른 동특성 변화 해석 (Analysis of Dynamic Characteristics by Rotational Speed of Wind Turbine Blade using Transfer Matrix)

  • 이정우;신동호;오재응;이정윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.144-149
    • /
    • 2012
  • The transfer matrix method is used to determine the dynamic characteristics(natural frequencies and mode shapes) by rotational speed of wind turbine blade. The problems treated on this study is coupled flapwise bending and chordwise bending of pre-twisted nonuniform wind turbine blade. The orthogonality relations that exist between the vibrational modes is derived and the algorithm for determination of the natural vibrational characteristics is suggested.

  • PDF

CFD에 의한 500kW급 수평축 풍력발전용 터빈의 성능평가 및 유동해석에 관한 연구 (A Study of Performance Estimate and Flow Analysis of the 500 kW Horizontal-Axis Wind Turbine by CFD)

  • 김유택;김범석;김정환;남청도;이영호
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.32-39
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine the complex 3-D stall phenomena on the rotor blade and wake distribution of the wind turbine. The flow characteristics of 500kW Horizontal Axis Wind Turbine (HAWT) are compared with the calculated 3-D stall phenomena and wake distribution. We used the CFX-TASCflow to predict flow and power characteristics of the wind turbine. The CFD results are somewhat consistent with the BEM (Blade Element Momentum) results. And, the rotational speed becomes faster, the 3-D stall region becomes smaller. Moreover, the pressure distribution on the pressure side that directly gets the incoming wind grows high as it goes toward the tip of the blade. The pressure distribution on the blade's suction side tells us that the pressure becomes low in the leading edge of the airfoil as it moves from the hub to the tip. However, we are not able to precisely predict on the power coefficient of the rotor blade at the position of generating complex 3-D stall region.

외부 오염물 증착에 의한 풍력 터빈 날개 단면의 공력 성능 저하 예측 (PREDICTION OF AERODYNAMIC PERFORMANCE LOSS OF A WIND TURBINE BLADE SECTION DUE TO CONTAMINANT ACCUMULATION)

  • 양태호;최재훈;유동옥;권오준
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.91-97
    • /
    • 2013
  • In the present study, the effects of contaminant accumulation and surface roughness on the aerodynamic performance of wind turbine blade sections were numerically investigated by using a flow solver based on unstructured meshes. The turbulent flow over the rough surface was modeled by a modified ${\kappa}-{\omega}$ SST turbulence model. The calculations were made for the NREL S809 airfoil with varying contaminant sizes and positions at several angles of attack. It was found that as the contaminant size increases, the degradation of the airfoil performance becomes more significant, and this trend is further amplified near the stall condition. When the contaminant is located at the upper surface near the leading edge, the loss in the aerodynamic performance of the blade section becomes more critical. It was also found that the surface roughness leads to a significant reduction of lift, in addition to increased drag.