DOI QR코드

DOI QR Code

Study on Optimal Design of Wind Turbine Blade Airfoil and Its Application

풍력발전기 블레이드의 에어포일 최적 설계 및 그 적용 연구

  • Sun, Min-Young (Dept. of Energy Engineering, Chonbuk Nat‘l Univ.) ;
  • Kim, Dong-Yong (Dept. of Energy Engineering, Chonbuk Nat‘l Univ.) ;
  • Lim, Jae-Kyoo (School of Mechanical Design Engineering, Chonbuk Nat‘l Univ., Advanced Wind Power System Research Center, Chonbuk Nat’l Univ.)
  • 선민영 (전북대학교 에너지공학과) ;
  • 김동용 (전북대학교 에너지공학과) ;
  • 임재규 (전북대학교 기계설계학과, 전북대학교 차세대풍력발전연구센터)
  • Received : 2011.06.07
  • Accepted : 2012.02.13
  • Published : 2012.05.01

Abstract

This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of this folding blade. In general, in large-sized (MW) wind turbines, damage is prevented because of the use of a pitch control system. On the other hand, pitch control is not performed in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut-out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.

본 연구는 두 가지 목표를 가지고 수행하였다. 하나는 수치해석과 Design-FOIL Pro.를 이용해 블레이드 에어포일 모델개발이고, 다른 하나는 이 모델을 Folding blade에 적용하는 것이다. 일반적으로 1MW이상 대형풍력터빈용 블레이드는 강풍시에 피칭제어로 풍향에 대해서 평형상태를 유지하여 로터를 회전시키지 않는 방법으로 블레이드의 손상을 방지 하였지만, 소형풍력터빈용 블레이드는 설비비, 유지비등 경제성을 이유로 피칭제어를 채택하지 않아 블레이드의 파손 문제가 심각하다. 그래서 본 연구에서는 유지보수가 필요 없고 강풍에서도 파손이 없는 Spring pack을 이용한 로터를 직접설계(Direct-Design) 방법으로 설계하여, 그 성능을 검증 하고 변화 풍속에 맞는 폴딩각을 이용해 강풍시에도 Wind turbine이 Cut-out 없이 계속발전을 유지할 수 있도록 하는 점에 집중 연구하고자 한다.

Keywords

References

  1. Korea Institut of Energy Research, 2003, "A Project for Construction of Wind Turbine Test Field," Small Wind Turbine Design, Vol. 5, pp. 104-106.
  2. Maalawi, K. Y. and Badawy, M.T.S., 2000, "A Direct Method for Evaluating Performance of Horizontal Axis Wind Turbines."
  3. Ministry of Knowledge Economy(2004-NWD11-P-05), 2006, "Preparation of a Guide for Permitting and Enhancement of Public Acceptance of Wind Power Development In Korea."
  4. Kim, B.-S., Kim, M.-E. and Lee, Y.-H., 2005, "A Comparative Study on the Turbulence Models for General CFD Code to Predict the Power Characteristics of a Wind Turbine Blade."
  5. Fuglsang, P. and Bak, C., 2004, "Development of the Risø Wind Turbine Airfoils" DK-4000 Roskilde.
  6. Guerrero, J. E., 2009, "Effect of Cambering on the Aerodynamic Performance of Heaving Airfoils," University of Genoa, Italy.
  7. Korea Institut Of Energy Research(KIER-A36301), 2002, "Develop of Computational Fluid Dynamic Code With Reaction (III)."
  8. Lanzafame, R. and Messina, M., 2007, "Fluid Dynamics Wind Turbine Design: Critical Analysis, Optimization and Application of BEM Theory."
  9. Vitale, A.J. and Rossi, A.P., 2007, "Computational Method for the Design of Wind Turbine Blades" Argentina.
  10. Ameku, K., Nagai, B. M. and Roy, J. N., 2008, "Design of a 3 kW Wind Turbine Generator with Thin Airfoil Blades," Experimental Thermal and Fluid Science, Vol. 32, Issue 8, pp. 1723-1730. https://doi.org/10.1016/j.expthermflusci.2008.06.008
  11. Thumthae, C. and Chitsomboon, T., 2008, "Optimal Angle of Attack for Untwisted Blade Wind Turbine."
  12. Henriques, J.C.C., da Silva, F.M., Estanqueiro, A.I. and Gato, L.M.C., 2009, "Design of a New Urban Wind Turbine Airfoil Using a Pressure-Load Inverse Method," Portugal.
  13. Jureczko, M., Pawlak, M. and Mezyk, A., 2005, "Optimisation of Wind Turbine Blades," pp.464-466
  14. da Silva, G. F., Marin, J.C. and Barroso, A., 2011, "Evaluation of Shear Flow in Composite Wind Turbine Blades" School of Engineering, University of Seville, Spain, Shear flow evaluation, pp.1832-1841
  15. Kim, B.-S., Kim, M.-E. and Lee, Y.-H., 2006, "Predicting the Aerodynamic Characteristics of 2D Airfoil and the Performance of 3D Wind Turbine using a CFD Code," pp. 1-8.
  16. Sicot, C., Devinant, P., Loyer, S. and Hureau, J., 2008, "Rotational and Turbulence Effects on a Wind Turbine Blade. Investigation of the Stall Mechanisms," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96, Issues 8-9, pp. 1320-1331. https://doi.org/10.1016/j.jweia.2008.01.013
  17. Korea Institut Of Energy Research, 2006, "Low Speed Wind Turbine Blade Development I," Composit Manufacturing Process, Chapter3, pp. 6-18.
  18. Kim, B.-S., Kim, M.-E. and Lee, Y.-H., 2005, "Basic Configuration Design and Performance Analysis of a 100Kw Wind Turbine Blade using Blade Element Momentum Theory," pp. 1-6.
  19. Habali, S.M. and Saleh, I.A., 1999, "Local Design, Testing and Manufacturing of Small Mixed Airfoil Wind Turbine Blades of Glass Fiber Reinforced Plastics," Part I: Design of the Blade and Root.
  20. Dierken, P., 2010, "Anlagenent wicklung WKA 3KW Blattdaten: the Development of a Wind Energy Converter 3KW." Dierken Engineering GmbH, Rostock.
  21. Ji, S. W., Park, S. K., Kim, T. S., 2010. "A Numerical Study on the Effect of Mountainous Terrain and Turbine Arrangement on the Performance of Wind Power Generation" Trans of the KSME B, Vol. 34 No. 10, pp. 907-916.