• Title/Summary/Keyword: $C_L/C_D$, 양항비

Search Result 7, Processing Time 0.021 seconds

Analysis of flow around on jib and main sails of sailing yacht (세일링 요트의 지브 세일과 메인 세일의 간격 변화에 따른 주위 유동 해석)

  • Choe, Hak-Gyu;Lee, Hui-Beom
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.643-648
    • /
    • 2014
  • 세일링 요트 (sailing yacht)는 세일 (sail)의 양력을 주로 이용하여 추진력을 얻는다. 요트 경주에서와 같이 항주 속도가 중요한 문제에서는 세일의 성능이 좋을수록 빠른 속도를 낼 수 있기 때문에 세일 주변의 유동해석을 통한 성능 추정과 효율의 최적화는 매우 중요하다. 본 논문에서는 일반적인 경주요트의 형태로써 지브 세일 (jib sail)과 메인 세일 (main sail) 그리고 한 개의 마스트(mast)로 구성된 슬루프(sloop)형 요트에 대한 유동해석을 하였다. 풍상범주 상태에서의 30ft급 세일링 요트인 KORDY-30의 jib sail과 main sail의 높이에 따른 단면을 모델링하였다. 슬루프형 요트의 경우, 세일링 요트에서 jib sail과 main sail이 각각 단독으로 있는 형태의 요트보다 세일의 개수가 증가함에 따라 양력이 증가하지만 항력도 따라서 증가 할 것이라고 가정했다. 따라서 jib sail의 각도를 다양하게 변화시켜 양력계수와, 항력계수의 변화를 살펴보고 그에 따른 양항비의 분석을 통해 최적의 효율을 갖는 jib sail의 각도를 알아보았다.

  • PDF

Numerical Study on Aerodynamic Characteristics of Kline-Fogleman Airfoil and Its 3D Application at Low Reynolds Number (Kline-Fogleman Airfoil과 이를 적용한 날개의 저 레이놀즈수 공력특성 연구)

  • Roh, Nahyeon;Yee, Kwanjung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • In this study, analyzed the aerodynamic characteristics of Kline-Fogleman airfoils and wings with those more efficiency at low Reynolds number. It was found that lift to drag ratio is enhanced in the range of Reynolds number below $2.4{\times}10^5$, especially, can be improved up to 26% at Reynolds number is $1{\times}10^4$. It was confirmed that the most advantage case in terms of lift-to-drag ratio is Middle case and lift-to-drag ratio is improved to 20% at 80% of the wing area is Kline-Folgeman airfoil. At this time, endurance time increase to 12%. Also taking the structural stability of the wing and lift-to-drag improvement into account, designed to be from 50% to 80% the size of the Kline-Fogleman Airfoil would be advantageous.

A Study on Aerodynamic Characteristics of Flatback Airfoils (Flatback 에어포일의 뒷전 두께에 따른 공력 특성 연구)

  • Mun, Chan-Ung;Choe, Tae-Hun
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.17-20
    • /
    • 2012
  • 본 연구는 전산유체해석 프로그램인 EDISON_CFD를 이용하여 NACA63-425 에어포일과 이 에어포일을 기반으로 만든 뒷전 두께가 2% 4%인 NACA63-425G02, NACA63-425G04에 대하여 두께 변화에 따른 공력 특성 변화를 수치해석을 수행 하였다. 난류점성내의 압축성 조건에서 받음각에 따른 양력계수, 항력계수, 양항비 등을 비교하여 Flatback 에어포일의 장단점에 대하여 결과를 분석해 보았다.

  • PDF

Analysis on Aerodynamic Characteristics of the CRW Air-Vehicle (CRW 비행체의 공력특성 해석)

  • Choi Seong Wook;Kim Jai Moo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2003
  • Smart UAV Development Program, one of the 21c Frontier R&D Program sponsored by MOST(Ministry of Science and Technology), was launched in 2002 As an air vehicle for the Smart UAV, CRW(Canard Rotor/wing) concept was one of the candidates compared in trade-off study. The CRW concept has not only been proven completely but its aerodynamic characteristics not known in detail yet. Two calculation methods were adopted in this study to obtain aerodynamic data for the CRW First method was the superpose DATCOM method which is capable of three lifting sufaces, and second one is the full Navier-Stokes computation around CRW configuration using overset grid method. Basic aerodynamic characteristics of the CRW configuration was analyzed and the minimum drag level with lift to drag ratio is presented. The peculiar flow characteristics around rotor/wing and hub were also examined and considered in the configuration design.

An External Shape Optimization Study to Maximize the Range of a Guided Missile in Atmospheric Flight (대기권을 비행하는 유도 미사일의 최대 사거리 구현을 위한 외형 형상 최적화 시스템 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Je, So-Yeong;Park, Chan-Woo;Myong, Rho-Shin;Cho, Tae-Hwan;Hwang, Ui-Chang;Je, Sang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.519-526
    • /
    • 2009
  • This paper describes a research result of a external shape optimization study to maximize the range of the guided missile with canards and tailfins in atmospheric flight. For this purpose, the external shape optimization program which can enhance the range of a missile was developed, incorporated with the trajectory analysis and the optimization technique. In the trajectory analysis part, Missile DATCOM which utilizes the semi-empirical method was directly connected to the trajectory code to supply the aerodynamic coefficients efficiently at every time step. In the gliding flight trajectory after apogee, a maximum $C_L/C_D$ trim condition calculation module was attached under the assumption of the missile continuously flying at maximum $C_L/C_D$ condition. In the optimization part, a Response Surface Method(RSM) was adopted to reduce the computing time.

Effect of Airfoil Thickness on the Optimum Gurney Flap Height (최적 Gurney 플랩크기에 대한 익형두께의 영향)

  • Yoo, Neung-Soo;Lee, Jang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.568-572
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of airfoil thickness on the optimum Gurney flap height using NACA 00XX series airfoils. Seven airfoils which have 3% chord thickness difference were used. These were NACA 0006, 0009, 0012, 0015, 0018, 0021, and 0024. A Navier-Stokes code, FLUENT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case fur our computational method, numerical studies for NACA 4412 airfoil were made and compared with already existing experimental data for this airfoil by Wadcock. For every NACA 00XX airfoil, Gurney flap heights ranging from 0.5% to 2.0% chord were changed by 0.5% chord interval and their effects were studied. With the numerical solutions, the relationship between $(L/D)_{max}$ and airfoil thickness as a function of flap height and the relationship between $(L/D)_{max}$ and flap height as a function of airfoil thickness were investigated. The same relationship for $(C_l)_{max}$ also were shown. From these results, the optimum flap size for each airfoil thickness can be determined and vice versa.

  • PDF

Study on Optimal Design of Wind Turbine Blade Airfoil and Its Application (풍력발전기 블레이드의 에어포일 최적 설계 및 그 적용 연구)

  • Sun, Min-Young;Kim, Dong-Yong;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.465-475
    • /
    • 2012
  • This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of this folding blade. In general, in large-sized (MW) wind turbines, damage is prevented because of the use of a pitch control system. On the other hand, pitch control is not performed in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut-out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.