• Title/Summary/Keyword: Wind Tunnel Tests

Search Result 442, Processing Time 0.03 seconds

Calibration of 6-component External Balance (외장형 6분력 풍동저울 교정)

  • Jo, Tae-Hwan;Jeong, Jin-Deok;Kim, Yang-Won;Jang, Byeong-Hui
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.47-52
    • /
    • 2006
  • The external balance of KARl LSWT is installed by Aerotech at 1998. It has been used for more than 70 tests until 2004. The upgrade and re-calibration program are planed to solve the problem that revealed in 7-years operation and to increase the accuracy of the system. In this paper, 3 calibration results are presented. The first one is the results done by Aerotech at 1998, the second one is the results by using quick-loading system at 2004, and the last one is the results done at 2005.

  • PDF

A Study on the Errors in Skin Friction Measurements due to Surface Temperature Mismatch (표면온도 차이에 의한 표면마찰력 측정 오차에 대한 연구)

  • 백승욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-218
    • /
    • 2000
  • An experimental study was performed to investigate the effect of surface temperature mismatch on measurements of skin friction using a plug-type skin friction gage mounted on the side wall of a supersonic wind tunnel. The freestream Mach number was 2.4 and Reynolds number per meter was $5.25 {\times}10^7$ with total pressure of 50 psi and total temperature of 275K. Temperature mismatch between the gage surface and surrounding wall surface was generated by hot water injection using the active temperature control system. Results of the tests showed that the temperature mismatch made sizable effects on the measurements of skin friction.

  • PDF

Use of CFD for Aerodynamic Interference Modelling of Jet-Controlled Missile (측추력 제어 유도탄의 공력모델링시 CFD의 적용)

  • Sung W. J.;Hong S. K.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.120-125
    • /
    • 2003
  • Recently, lateral jet has been adopted as an effective control device for high maneuverable tactical missiles in supersonic regime. Aerodynamic interference caused by the lateral jet can be categorized into two phenomena : local interaction redistributing surface pressure near the jet exit region and downstream interaction affecting tail control effectiveness. As part of on-going research, this paper deals with the aerodynamic modeling to predict the variation of force and moment when lateral jet of is activated on the missile body. For this purpose, a series of numerical simulation has been performed and the results are presented. Using the information obtained by CFD, aerodynamic model of preliminary level has been constructed and is reviewed. Some relevant comparison with wind tunnel tests are presented.

  • PDF

Study on the Fundamental Technologies of ATREX Engine

  • Sato, Tetsuya;Kobayashi, Hiroaki;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.665-670
    • /
    • 2004
  • This paper reviews the latest studies of the expander cycle Air Turbo Ramjet engine (ATREX) conducted in JAXA. First, a system analysis including the vehicle and trajectory was conducted to optimize the engine cycle and turbo-machine configuration. We selected the precooled turbo-jet cycle for a prototype engine using the near term technologies. Second, a system ground-firing test was conducted to verify a defrosting system for the precooler. Methanol injection with its particles atomization could compensate 80 % of pressure loss caused by the frost. Thirdly, a feasibility of carbon/carbon composites for the engine components was investigated by making complex shapes such as a heat exchanger and a plug nozzle. Basic technologies on the gas leakage, the junction and bonding were also studied. The end of the paper, some basic studies such as wind tunnel tests of a new type air inlet and a plug nozzle are described.

  • PDF

Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method (CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험)

  • Kim, Dong-Hyun;Oh, Se-Won;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF

Response Time Index and Operation Time of Fixed Temperature Heat Detector (정온식 열감지기의 응답시간지수 및 작동시간)

  • 류호철;태순호;이병곤
    • Fire Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1993
  • Fixed temperature heat detectors that respond to the heat generated in fire plume and alarm when the temperature reaches a specified point, give a great influences to the loss of life and property according to their reaction sensitivity. In this study, hot wind tunnel tests and compartment fire experiments were performed to investigate the response time and temperature of fixed temperature heat detector. As a result, simple equations were derived which can be predicted the response time and temperature of the fixed temperature heat detector for the ramp type fire. Also other useful data, such as the effective temperature, time constant, response time index(RTI) were obtained.

  • PDF

Evaluation of Wake Galloping for Inclined Parallel Cables by Two-Dimensional Wind Testes Tests (2차원 풍동실험을 통한 평행 경사 실린더의 웨이크 갤로핑 평가)

  • Kim, Sun-Joong;Kim, Ho-Kyung;Lee, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.763-775
    • /
    • 2011
  • The wake galloping phenomenon is evaluated for two cylinders via two-dimensional wind tunnel tests. The two cylinders are deployed parallel to the inclination of the vertical plane, which simulates the inclined stay cables of a cable-stayed bridge. The upstream and downstream displacements of the cylinder are observed with varying center distances between the two cylinders. The effect of structural damping on the mitigation of wake galloping is also investigated. The amplitude of the vibration is very sensitive to center distance between the two cylinders. The maximum amplitudes exceededthe allowable limit of the design guidelines for small center distances of less than or equal to six times the diameter of the cylinder. The overall results conformedto the conventional design practice for the wake galloping of parallel cables. It was found, however, that the increase in the damping was not effective in reducing the amplitude of the vibration in the wake galloping phenomenon.

Scaled model tests for improvement and applicability of the transverse smoke control system on tunnels (횡류식 제·배연 시스템의 개선 및 적용성 분석을 위한 모형실험 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Kim, Jae-Hyun;Lee, Seong-Won;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2020
  • Currently, road tunnels and railroad tunnels are building smoke control systems to emit toxic gases and smoke from fires. Among the various smoke control systems, the transverse smoke control system has the disadvantage that air supply or exhaust is performed on only half of the cross-section, rather than air supply or exhaust on the entire cross-section of the tunnel as air is supplied or exhausted by partitioning the wind path. Therefore, this study analyzed the effect of exhaustion through numerical analysis and scaled model tests on the zoning smoke control system, which improved the limitations of the transverse smoke control system. As a result of the scaled model test, the transverse ventilation system exhibited a 25.6% smoke control rate based on the state where no smoke was controled, and zoning smoke control system showed a smoke control rate of 40.8%. In addition, as a result of numerical analysis, it was found that transverse ventilation system did not control fire smoke spreading from the tunnel and continued to spread. On the other hand, zoning smoke control system was found to be smoke controled within a certain section due to the air curtain effect and the flue gas effect.

Performance Evaluation of Vibration Control of High-rise Buildings Connected by Sky-Bridge (스카이브릿지로 연결된 고층건물의 진동제어 성능평가)

  • Kim, Hyun-Su;Yang, Ah-Ram;Lee, Dong-Guen;Ahn, Sang-Kyung;Oh, Jung-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • In this study, the vibration control performance of high-rise building structures connected by a sky-bridge has been investigated. The philosophy of vibration control using sky-bridges is to allow structures with different dynamic characteristics to exert control forces upon one another through sky-bridges to reduce the overall responses of the system. The the high-rise building structure connected by sky-bridge with 49 and 42 stories was used in this study to investigate the displacement, acceleration, reaction of bearings and stress of sky-bridge by analytical methods. To this end, historical earthquakes, an artificial earthquake and wind force time histories obtained from wind tunnel tests were used. Based on the analytial results, the use of sky-bridge can be effective in reducing the structural responses of high-rise buildings against wind and seismic loads.

  • PDF

Icing Wind Tunnel Tests to Improve the Surface Roughness Model for Icing Simulations (착빙 해석의 표면 거칠기 모델 개선을 위한 착빙 풍동시험 연구)

  • Son, Chankyu;Min, Seungin;Kim, Taeseong;Kim, Sun-Tae;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.611-620
    • /
    • 2018
  • For the past decades, the analytic model for distributed surface roughness has been developed to improve the accuracy of the icing simulation code. However, it remains limitations to validate the developed model and determine the empirical parameters due to the absence of the quantitative experimental data which were focused on the surface state. To this end, the experimental study conducted to analyze the ice covered surface state from a micro-perspective. Above all, the tendency of the smooth zone width which occurs near the stagnation point has been quantitatively analyzed. It is observed that the smooth zone width is increased as growing the ambient temperature and freestream velocity. Next, the characteristics of the ice covered surface under rime and glaze ice have been analyzed. For rime ice conditions, ice elements are developed as the opaque circular corn in the opposite direction of freestream. The height and interval of each circular corn are increased as rising the ambient temperature. For glaze ice conditions, numerous lumps of translucent ice can be observed. This is because the beads formed by gravity concentrate and froze on the lower surface.