• 제목/요약/키워드: Wind Speed forecasting

검색결과 94건 처리시간 0.021초

RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델 (Short Term Forecast Model for Solar Power Generation using RNN-LSTM)

  • 신동하;김창복
    • 한국항행학회논문지
    • /
    • 제22권3호
    • /
    • pp.233-239
    • /
    • 2018
  • 태양광 발전은 기상 상태에 따라 간헐적이기 때문에 태양광 발전의 효율과 경제성 향상을 위해 정확한 발전량 예측이 요구된다. 본 연구는 목포 기상대에서 예보하는 기상 데이터와 영암 태양광 발전소의 발전량 데이터를 이용하여 태양광 발전량 단기 딥러닝 예측모델을 제안하였다. 기상청은 기온, 강수량, 풍향, 풍속, 습도, 운량 등의 기상요소를 3일간 예보한다. 그러나 태양광 발전량 예측에 가장 중요한 기상요소인 일조 및 일사 일사량 예보하지 않는다. 제안 모델은 예보 기상요소를 이용하여, 일조 및 일사 일사량을 예측 하였다. 또한 발전량은 기상요소에 예측된 일조 및 일사 기상요소를 추가하여 예측하였다. 제안 모델의 발전량 예측 결과 DNN의 평균 RMSE와 MAE는 0.177과 0.095이며, RNN은 0.116과 0.067이다. 또한, LSTM은 가장 좋은 결과인 0.100과 0.054이다. 향후 본 연구는 다양한 입력요소의 결합으로 보다 향상된 예측결과를 도출할 수 있을 것으로 기대된다.

Characteristics of regional scale atmospheric dispersion around Ki-Jang research reactor using the Lagrangian Gaussian puff dispersion model

  • Choi, Geun-Sik;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny;Kim, Ki-Hyun;Lee, Jin-Hong
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.68-79
    • /
    • 2018
  • The Ki-Jang research reactor (KJRR), a new research reactor in Korea, is being planned to fulfill multiple purposes. In this study, as an assessment of the environmental radiological impact, we characterized the atmospheric dispersion and deposition of radioactive materials released by an unexpected incident at KJRR using the weather research and forecasting-mesoscale model interface program-California Puff (WRF-MMIF-CALPUFF) model system. Based on the reproduced three-dimensional gridded meteorological data obtained during a 1-year period using WRF, the overall meteorological data predicted by WRF were in agreement with the observed data, while the predicted wind speed data were slightly overestimated at all stations. Based on the CALPUFF simulation of atmospheric dispersion (${\chi}/Q$) and deposition (D/Q) factors, relatively heavier contamination in the vicinity of KJRR was observed, and the prevailing land breeze wind in the study area resulted in relatively higher concentration and deposition in the off-shore area sectors. We also compared the dispersion characteristics between the PAVAN (atmospheric dispersion of radioactive release from nuclear power plants) and CALPUFF models. Finally, the meteorological conditions and possibility of high doses of radiation for relatively higher hourly ${\chi}/Q$ cases were examined at specific discrete receptors.

Prediction of spatio-temporal AQI data

  • KyeongEun Kim;MiRu Ma;KyeongWon Lee
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.119-133
    • /
    • 2023
  • With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has increased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.

한국에서 발생한 청천난류 사례들에 대한 수치연구 (A Numerical Study on Clear-Air Turbulence Events Occurred over South Korea)

  • 민재식;김정훈;전혜영
    • 대기
    • /
    • 제22권3호
    • /
    • pp.321-330
    • /
    • 2012
  • Generation mechanisms of the three moderate-or-greater (MOG)-level clear-air turbulence (CAT) encounters over South Korea are investigated using the Weather Research and Forecasting (WRF) model. The cases are selected among the MOG-level CAT events occurred in Korea during 2002-2008 that are categorized into three different generation mechanisms (upper-level front and jet stream, anticyclonic flow, and mountain waves) in the previous study by Min et al. For the case at 0127 UTC 18 Jun 2003, strong vertical wind shear (0.025 $s^{-1}$) generates shearing instabilities below the enhanced upper-level jet core of the maximum wind speed exceeding 50 m $s^{-1}$, and it induces turbulence near the observed CAT event over mid Korea. For the case at 2330 UTC 22 Nov 2006, areas of the inertia instability represented by the negative absolute vorticity are formed in the anticyclonically sheared side of the jet stream, and turbulence is activated near the observed CAT event over southwest of Korea. For the case at 0450 UTC 16 Feb 2003, vertically propagating mountain waves locally trigger shearing instability (Ri < 0.25) near the area where the background Richardson number is sufficiently small (0.25 < Ri < 1), and it induces turbulence near the observed CAT over the Eastern mountainous region of South Korea.

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

시설원예용 난방온실의 온열환경 분석에 관한 연구 (A Study on Thermal Environment Analysis of a Greenhouse)

  • 송뢰;박윤철
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.15-20
    • /
    • 2018
  • To study the effects of solar energy in a greenhouse, outdoor air temperature and wind speed on inside air temperature, a simulation model for forecasting the greenhouse air temperature was conducted on the basis of the energy and mass balance theory. Application of solar energy to the greenhouse is major area in the renewable energy research and development in order to save energy. Recently, considering the safety and efficiency of the heating of greenhouse, clean energy such as geothermal and solar energy has received much attention. The analysed greenhouse has $50m^2$ of ground area which located in jocheon-ri of Jeju Province. Experiments were carried out to collect data to validate the model. The results showed that the simulated air temperature inside a plastic greenhouse agreed well with the measured data.

Impact of Hull Condition and Propeller Surface Maintenance on Fuel Efficiency of Ocean-Going Vessels

  • Tien Anh Tran;Do Kyun Kim
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.181-189
    • /
    • 2023
  • The fuel consumption of marine diesel engines holds paramount importance in contemporary maritime transportation and shapes energy efficiency strategies of ocean-going vessels. Nonetheless, a noticeable gap in knowledge prevails concerning the influence of ship hull conditions and propeller roughness on fuel consumption. This study bridges this gap by utilizing artificial intelligence techniques in Matlab, particularly convolutional neural networks (CNNs) to comprehensively investigate these factors. We propose a time-series prediction model that was built on numerical simulations and aimed at forecasting ship hull and propeller conditions. The model's accuracy was validated through a meticulous comparison of predictions with actual ship-hull and propeller conditions. Furthermore, we executed a comparative analysis juxtaposing predictive outcomes with navigational environmental factors encompassing wind speed, wave height, and ship loading conditions by the fuzzy clustering method. This research's significance lies in its pivotal role as a foundation for fostering a more intricate understanding of energy consumption within the realm of maritime transport.

WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사 (Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models)

  • 원명수;한선호
    • 한국농림기상학회지
    • /
    • 제15권1호
    • /
    • pp.17-25
    • /
    • 2013
  • 본 연구는 복잡한 산악지형에서 바람장 변화를 해석하고, 산불발생시 확산방향을 예측하여 산불방지 전략에 활용하기 위해서 수행되었다. 연구 대상지는 2000년 4월 7일 산불이 발생하여 10일간 진행되었던 삼척지역을 대상으로 하였다. 삼척 산불피해지는 복잡한 산악구조를 가지고 있는데 먼저 중규모 기상 모델인 WRF를 사용하여 대상지에 설치한 AWS(4 지점)의 관측결과와 비교하였다. WRF 모의 결과, 4개 지점의 풍속은 AWS 관측지점의 풍속에 비해 5~8m/s(200% 과대평가) 강하였으며, 관측된 풍향은 지점마다 다양하게 나타난 것에 비해 모의된 풍향은 모든 지점에서 서풍계열로 나타났다. 결과적으로 WRF와 같은 중규모 기상모델은 복잡한 산악지형에서의 바람장 변화를 잘 모의하지 못하였다. 이러한 문제점을 해결하기 위해 미기상 대기유동장 수치모형인 ENVI-met 프로그램을 이용하여 지표면 높이에서 삼척 LTER 지역의 국지규모 바람장을 모의하였다. 지형효과에 의한 모델의 민감도를 위해 다양한 초기 조건(기류, 온 습도, 대기난류, 토양 및 식생 모형)들을 고려하여 분석하였다. ENVI-met 모의결과, 풍속은 실측과 비교할 때 약 70%의 정확도를 보였으며, 풍향은 계곡부와 능선부에서 지형효과로 인한 변화를 잘 반영하였다. 향후 ENVI-met은 산불확산예측 및 산불방지전략 수립을 위해 미기상 대기유동장 수치모형을 이용하여 산악지역의 미기상 해석에 관한 연구가 필요할 것으로 판단된다.

지형 강제력과 하층제트 변화가 한반도 남동 지역 국지 강수에 미치는 영향 분석 연구 (Impact of Topographic Forcing and Variation of Lower-level Jet on Local Precipitation in Southeast Region of Korean Peninsula)

  • 채다은;김은지;김지선;이순환
    • 한국환경과학회지
    • /
    • 제29권1호
    • /
    • pp.1-13
    • /
    • 2020
  • Recently, a heavy rainfall with high spatial variation occurred frequently in the Korean Peninsula. The meteorological event that occurred in Busan on 3 May 2016 is characterized by heavy rain in a limited area. In order to clarify the reason of large spatial variation associated with mountain height and location of low level jet, several numerical experiments were carried out using the dynamic meteorological Weather Research and Forecasting (WRF) model. In this case study, the raised topography of Mount Geumjeong increased a barrier effect and air uplifting due to topographic forcing on the windward side. As a result, wind speed reduced and precipitation increased. In contrast, on the downwind side, the wind speed was slightly faster and since the total amount of water vapor is limited, the precipitation on the downwind side reduced. Numerical experiments on shifting the location of the lower jet demonstrated that if the lower jet is close to the mountain, its core becomes higher due to the effect of friction. Additionally, the water vapor convergence around the mountain increased and eventually the precipitation also increased in the area near the mountain. Hence, the location information of the lower jet is an important factor for accurately predicting precipitation.

기상예보시스템을 이용한 가공송전선의 단기간 동적송전용량 예측 (Short-Term Dynamic Line Rating Prediction in Overhead Transmission Lines Using Weather Forecast System)

  • 김성덕;이승수;장태인;장지원;이동일
    • 조명전기설비학회논문지
    • /
    • 제18권6호
    • /
    • pp.158-169
    • /
    • 2004
  • 본 논문에서는 실시간 기상예보데이터를 사용하여 가공송전선의 단시간 송전용량을 예측하기 위한 방법을 제안한다. 기상청에서 제공되는 예보기온, 풍속등급 및 날씨코드와 같은 3시간 예보요소들을 분석하여 기상예보데이터와 실제 측정데이터 사이의 상관성이 분석되었다. 동적송전용량을 결정하는데 사용하기 위하여 이러한 요소들은 적당한 수치로 변환되었다. 또한 풍속과 일사량에 대한 신뢰도를 개선하기 위하여 적응뉴로퍼지시스템이 설계되었다. 기상예보데이터가 송전용량을 신뢰성을 갖도록 추정하는데 사용될 수 있음을 밝혔다. 그 결과 제안된 예측시스템이 단시간 용량예측에 효율적으로 실용화될 수 있을 것이다.