• 제목/요약/키워드: Wind Speed Estimation

검색결과 259건 처리시간 0.028초

ESTIMATION OF INTRINSIC WAVE PARAMETERS AND MOMENTUM FLUXES OF MESOSPHERIC GRAVITY WAVES OVER KOREA PENINSULA USING ALL-SKY CAMERA AND FABRY-PEROT INTERFEROMETER (전천 카메라와 페브리-페로 간섭계 자료를 이용한 한반도 상공 중간권 중량파의 고유파동계수 및 운동량 플럭스 산출)

  • Chung, Jong-Kyun;Kim, Yong-Ha;Won, Young-In;Jee, Gun-Hwa
    • Journal of Astronomy and Space Sciences
    • /
    • 제24권4호
    • /
    • pp.327-338
    • /
    • 2007
  • We estimate the momentum fluxes of short-period gravity waves which are observed in the OI 557.7 nm nightglow emission with all-sky camera at Mt. Bohyun ($36.2^{\circ}\;N,\;128.9^{\circ}\;E$) in Korea. The intrinsic phase speed ($C_{int}$), the intrinsic period (${\tau}_{int}$), and vertical wavelength (${\lambda}_z$) are also deduced from the horizontal wavelength (${\lambda}_h$), observed period (${\tau}_{ob}$), propagation direction (${\phi}_{ob}$), observe phase speed (${\upsilon}_{ob}$) of the gravity wave on the all-sky images. The neutral winds to deduce intrinsic wave parameters are measured with Fabry-Perot interferometer on Shigaraki ($34.8^{\circ}\;N,\;13.1^{\circ}\;E$) in Japan. We selected 5-nights of observations during the period between July 2002 and December 2006 considering of the weather and instrument conditions in two observation sites. The mean values of intrinsic parameter of gravity waves are $({\tau}_{int})\;=\;12.9\;{\pm}\;6.1\;m/s,\;({\lambda}_z)\;=\;12.9\;{\pm}\;6.5,\;and\;(C_{int})\;=\;40.6\;{\pm}\;11.6\;min$. The mean value of calculated momentum fluxes for four nights besides of ${\lambda}_z\;<\;6\;km$ is $12.0\;{\pm}\;15.2\;m^2/s^2$. It is needed the long-term coherent observation to obtain typical values of momentum fluxes of the mesospheric gravity waves using all-sky camera and the neutral wind measurements.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • 제17권6호
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

Verification of Kompsat-5 Sigma Naught Equation (다목적실용위성 5호 후방산란계수 방정식 검증)

  • Yang, Dochul;Jeong, Horyung
    • Korean Journal of Remote Sensing
    • /
    • 제34권6_3호
    • /
    • pp.1457-1468
    • /
    • 2018
  • The sigma naught (${\sigma}^0$) equation is essential to calculate geo-physical properties from Synthetic Aperture Radar (SAR) images for the applications such as ground target identification,surface classification, sea wind speed calculation, and soil moisture estimation. In this paper, we are suggesting new Kompsat-5 (K5) Radar Cross Section (RCS) and ${\sigma}^0$ equations reflecting the final SAR processor update and absolute radiometric calibration in order to increase the application of K5 SAR images. Firstly, we analyzed the accuracy of the K5 RCS equation by using trihedral corner reflectors installed in the Kompsat calibration site in Mongolia. The average difference between the calculated values using RCS equation and the measured values with K5 SAR processor was about $0.2dBm^2$ for Spotlight and Stripmap imaging modes. In addition, the verification of the K5 ${\sigma}^0$ equation was carried out using the TerraSAR-X (TSX) and Sentinel-1A (S-1A) SAR images over Amazon rainforest, where the backscattering characteristics are not significantly affected by the seasonal change. The calculated ${\sigma}^0$ difference between K5 and TSX/S-1A was less than 0.6 dB. Considering the K5 absolute radiometric accuracy requirement, which is 2.0 dB ($1{\sigma}$), the average difference of $0.2dBm^2$ for RCS equation and the maximum difference of 0.6 dB for ${\sigma}^0$ equation show that the accuracies of the suggested equations are relatively high. In the future, the validity of the suggested RCS and ${\sigma}^0$ equations is expected to be verified through the application such as sea wind speed calculation, where quantitative analysis is possible.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제44권1호
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • 제35권4호
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.

A Study of the Work Efficiency in the High Altitude according to Climatic Elements (지역별 기후에 따른 고소작업가능률 산정 - 서울, 인천, 부산 지역을 중심으로 -)

  • Lee, Hyun-Soo;Cho, Sung-Jun;Park, Moon-Seo;Hwang, Sung-Joo;Kim, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • 제13권3호
    • /
    • pp.67-77
    • /
    • 2012
  • O Having a highly reliable plan for the process and estimating an accurate construction period during the early stages of a construction project can prevent falsifying the plan and reduce the occurrence of construction delays. Moreover, it allows a succession of swift and accurate decisions to happen. The difficulty in obtaining an accurate estimate of the construction period is especially prominent in high-rise building projects because the works involved are very complicated and costly. As such, it is important that research is done to find out the impacts a reliable plan and good estimate of the construction period can bring with regards to the monthly work efficiency and success of a high-rise building project. However, due to the difference in climatic conditions at high altitude and surface level, the current way of calculating work efficiency in a typical project is inaccurate for a high-rise building project. With that, this paper aims to compute the work efficiency with height, taking into consideration the change in climatic elements at different working heights. A comparison of the results according to the climatic features of each city can also be done in this paper. According to the results calculated in work altitudes, the work efficiency in Busan falls the most. On the other hands, the work efficiency in Seoul falls the least. The reason these results are shown is the influence of wind speed at high altitude. The estimation of work efficiency at high altitude would be used for estimating construction period, feasibility studies, and selecting a city of high-rise building projects.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • 제25권2호
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Estimation of Air-Sea Heat Exchange Using BUOY Data at the Yellow Sea, Korea (부이 관측자료를 이용한 서해 해역의 해양-대기 열교환량 산출)

  • kang, Yune-Jeung;Hwang, Seung-On;Kim, Tae-Hee;Nam, Jae-Cheol
    • Journal of the Korean earth science society
    • /
    • 제22권1호
    • /
    • pp.40-46
    • /
    • 2001
  • Heat exchange between the atmosphere and sea is produced using the data from two 3m discus buoy installed by KMA in 1996. The meteorological and oceanic characteristics at the Dukjukdo and Chilbaldo buoy for the period 1996 ${\sim}$ 2000 are discussed. Daily averaged sensible heat and latent heat flux at each site are estimated from bulk aerodynamic method using given data and analyzed. Quantitative analyses show SST indicates 1-year cycle like air temperature but has 1 month lag. Sea level pressure is lowest in July, humidity is higher from May to August, and wind speed has averaged value of 5 m/s and higher in autumn and winter. Sensible heat flux analyses present that strong heat loss from the sea occurs in autumn and winter and weak heat loss from atmosphere appears in spring and summer, and net sensible heat loss from the sea is found throughout the year. The ocean significantly releases latent heat into atmosphere from August to May but get a little latent heat from atmosphere in other months. Net latent heat loss from the sea is larger than net sensible heat loss except in January and February. Comparison with two sites suggests that the magnitude of heat flux and their fluctuation are generally stronger at Dukjukdo than at Chilbaldo. In case study, both sensible and latent heat flux is a little more at Chilbaldo in March 1998, but substantially stronger at Dukjukdo in November 1996.

  • PDF

Influence of Land Use and Meteorological Factors for Evapotranspiration Estimation in the Coastal Urban Area (해안도시 지역에서 증발산량 산정에 토지이용도와 기상인자의 영향성)

  • Yang, Sung-Il;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • 제19권3호
    • /
    • pp.295-304
    • /
    • 2010
  • Actual evapotranspiration (AET) in the Suyeong-gu was estimated and correlations between AET and meteorological factors were analyzed. The study area was Suyeong-gu lay at the east longitude $129^{\circ}$ 05' 40" ~ 129$^{\circ}$ 08' 08" and north latitude $35^{\circ}$ 07' 59" ~ $35^{\circ}$ 11' 01". The Kumryun mountain, the Bae mountain, the Suyeong river and the Suyeong bay are located on west, north, northeaster and south side in the study area, respectively. AET was estimated using precipitation (P), potential evapotranspiration (PET) and plant-available water coefficient. Meteorological factors to estimate PET were air temperature, dewpoint temperature, atmospheric pressure, duration of sunshine and mean wind speed (MWS). PET and AET were estimated by a method of Allen et al. (1998) and Zhang et al. (2001), respectively. PET was the highest value (564.45 mm/yr) in 2002 year, while it was the lowest value (449.95 mm/yr) in 2003 year. AET was estimated highest value (554.14 mm/yr) in 2002 year and lowest value (427.91 mm/yr) in 2003 year. Variations of PET and AET were similar. The linear regression function of AET as PET using monthly data was AET=0.87$\times$PET+3.52 and coefficient of determination was high, 0.75. In order to analyze relationship between the evapotranspiration and meteorological factors, correlation analysis using monthly data were accomplished. Correlation coefficient of AET-PET was 0.96 high, but they of AET-P and PET-P were very low. Correlation coefficients of AET-MWS and PET-MWS were 0.67 and 0.73, respectively. Thus, correlation between evapotranspiration and MWS was the highest among meteorological factors in Suyong-gu. This means that meteorological factor to powerfully effect for the variation of evapotranspiration was MWS. The linear regression function of AET as MWS was AET=84.73$\times$MWS+223.05 and coefficient of determination was 0.54. The linear regression function of PET as MWS was PET=83.83$\times$MWS+203.62 and coefficient of determination was 0.45.

Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea (우리나라 기후특성을 고려한 Hargreaves 공식의 매개변수 지역화)

  • Moon, Jang Won;Jung, Chung Gil;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • 제46권9호
    • /
    • pp.933-946
    • /
    • 2013
  • The quantitative analysis of evapotranspiration (ET) is a key component in hydrological studies and the establishment of water resources planning. Generally, the quantitative analysis of ET is performed by the estimation method of potential or reference ET based on meteorological factors such as air temperature, wind speed, etc. Hargreaves equation is one of empirical methods for reference ET using air temperature data. In this study, in order to estimate more exact reference ET considering climatological characteristics in Korea, parameter regionalization of Hargreaves equation is carried out. Firstly, modified Hargreaves equation is presented after the analysis of the relationship between solar radiation and temperature. Secondly, parameter ($K_{ET}$) optimization of Hargreaves equation is performed using Penman-Monteith method and modified equation at 71 weather stations. Lastly, the equation for calculating $K_{ET}$ using temperature data is proposed and verified. As a result, reference ET from original Hargreaves equation is overestimated or underestimated compared with Penman-Monteith method. But modified equation in this study is more accurate in the climatic conditions of Korea. In addition, the applicability of the equation between $K_{ET}$ and temperature is confirmed.