최근 풍력발전 시스템은 가장 빨리 발전하고 있는 신재생 에너지원중 하나로 각광을 받고 있으며, 풍력발전 시스템의 주된 관심사는 어떻게 광범위한 풍속의 변화에서도 효율적으로 시스템을 동작시키는 가에 있다. 일반적으로 풍속은 풍력발전시스템의 동특성에 큰 영향을 미치는 요소이다. 따라서 많은 풍력발전 제어 알고리즘은 성능향상을 위해 풍속의 측정을 요구하게 된다. 그러나 불행히도 풍속계와 같은 센서에 의한 실효 풍속의 정확한 측정은 어려운 실정이며 따라서 제어 시스템의 동작을 위해 풍속은 여러 가지 기법을 통해 추정되고 있는 실정이다. 이에 본 연구에서는 신경망 학습을 통해 현재 풍속을 추정한 후 추정된 풍속을 이용하여 최대 전력점을 추종(MPPT)하는 방법을 제안하고자 하며, 제안된 기법의 유용성 검증을 위해 실제 제작된 실험환경에서의 적용실험을 수행하였다.
Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.
대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
/
pp.286-291
/
1998
SAR has provided weather independent images on land and sea surface, which can be used for extracting various useful informations. Recently attempts to estimate wind field parameters from SAR images over the oceans have been made by various groups over the world. Although scatterometer loaded in ERS-1 and ERS-2 observes the global wind vector field at spatial resolution of 50 Km with accuracies of $\pm$2m/s in speed, the spatial resolution may not be good enough for applications in coastal regions. It is weil known the sea surface roughness is closely correlated to the wind field, but the wind retrieval algorithms from SAR images are yet in developing stage. Since the radar backscattering properties of the SAR images are principally the same as that of scatterometer, some previous studies conducted by other groups report the success in mesoscale coastal wind field retrievals using ERS SAR images. We have tested SWA (SAR Wind Algorithm) and CMOD4 model for estimation of wind speed using an ERS-1 SAR image acquired near Cheju Island, Korea, in October 11, 1994. The precise estimation of sigma nought and the direction of wind are required for applying the CMOD4 model to estimate wind speed. The wind speed in the test sub-image is estimated to be about 10.5m/s, which relatively well agrees to the observed wind speed about 9.0m/s at Seoguipo station. The wind speed estimation through the SWA is slightly higher than that of CMOD4 model. The sea surface condition may be favorable to SWA on the specific date. Since the CMOD4 model requires either wind direction or wind speed to retrieve the wind field, we should estimate the wind speed first using other algorithm including SWA. So far, it is not conclusive if the SWA can be used to provide input wind speed data for CMOD4 model or not. Since it is only initial stage of implementing the wind field retrieval algorithms and no in-situ observed data is currently avaliable, we are not able to evaluate the accuracy of the results at the moment. Therefore verification studies should be followed in the future to extract reliable wind field information in the coastal region using ERS SAR images.
This paper presents a simulation model based on support vector regression (SVR) for flicker emission estimation from wind turbines. Training patterns are developed by varying the wind speed and network parameters that might affect the expected flicker levels. A comparison is done to the fixed speed wind turbine (WT), which leads to a conclusion that the factors mentioned above have different influences on flicker emission. The simulation results have shown that the flicker estimation is performed accurately.
The estimation of wind speed values used in codes and standards is an integral part of the wind load evaluation process. In a number of codes and standards, wind speeds outside of tropical cyclone prone regions are estimated using a single probability distribution developed from observed wind speed data, with no distinction made between the types of causal wind hazard (e.g., thunderstorm). Non-tropical cyclone wind hazards (i.e., thunderstorm, non-thunderstorm) have been shown to possess different probability distributions and estimation of non-tropical cyclone wind speeds based on a single probability distribution has been shown to underestimate wind speeds. Current treatment of non-tropical cyclone wind hazards in worldwide codes and standards is touched upon in this work. Meteorological data is available at a considerable number of United States (U.S.) stations that have information on wind speed as well as the type of causal wind hazard. In this paper, probability distributions are fit to distinct storm types (i.e., thunderstorm and non-thunderstorm) and the results of these distributions are compared to fitting a single probability distribution to all data regardless of storm type (i.e., co-mingled). Distributions fitted to data separated by storm type and co-mingled data will also be compared to a derived (i.e., "mixed") probability distribution considering multiple storm types independently. This paper will analyze two extreme value distributions (e.g., Gumbel, generalized Pareto). It is shown that mixed probability distribution, on average, is a more conservative measure for extreme wind speed estimation. Using a mixed distribution is especially conservative in situations where a given wind speed value for either storm type has a similar probability of occurrence, and/or when a less frequent storm type produces the highest overall wind speeds. U.S. areas prone to multiple non-tropical cyclone wind hazards are identified.
최근 풍력발전 시스템은 가장 빨리 발전하고 있는 신재생 에너지원중 하나로 각광을 받고 있으며, 풍력발전 시스템의 주된 관심사는 어떻게 광범위한 풍속의 변화에서도 효율적으로 시스템을 동작시키는 가에 있다. 가변속 풍력발전 시스템은 고정속 풍력발전 시스템에 비해 더 높은 에너지 효율, 낮은 컴포넌트 스트레스를 달성할 수 있다는 장점을 갖는다. 일반적으로 가변속 풍력발전 시스템의 제어를 위해서는 풍속정보의 취득이 필수적으로 요구된다. 하지만 풍속계 등에 의해 측정된 풍속은 여러 요인에 의해 정확하지 않다는 문제점을 갖는다. 이에 본 연구에서는 풍속의 추정을 위한 칼만 필터와 칼만 필터에 의해 추정된 정보를 사용하여 학습된 인공신경망으로부터 최적의 로터 회전 속도를 유추할 수 있는 새로운 형태의 가변속 풍력발전 시스템을 위한 제어 알고리듬을 제안하고자 한다. 또한 Matlab의 시뮬링크를 사용하여 다양한 시뮬레이션 수행하여 제안된 기법의 유용성을 확인하고자 한다.
The research was conducted windward of an irrigated Acacia amplicips Maslin windbreak established to protect As Salam Cement Plant from winds and moving sands. Two belts with approximate optical porosities of 50% and 20% were studied in River Nile State, Sudan. The research aimed at assessing the efficiency of the two belts in wind speed reduction and sand deposition. Research methods included: (i) estimation of optical porosity, (ii) measurements of windward wind speeds at a control and at distances of 0.5 h (h stands for windbreak height), 1 h and 2 h at two vertical levels of 0.25 h and 0.5 h, (iii) estimation of relative wind speeds at the three positions (distance and height) at windward and (iv) estimation of wind erosive forces and prediction of zones of sand deposition. Results show that while the two belts reduced windward wind speeds at the two levels for the three distances, belt II was more effective. Nearest sand deposition occurred at 2 h and 1h windward of belt II and belt I, respectively, at level 0.25 h. At level 0.5 h, sand was deposited only at 2 h windward of belt II and no sand deposition occurred windward of belt I. The study concludes that less porous windbreaks are more effective in reducing wind speed and in depositing sand in windward direction at a distance of not less than twice the belt height.
The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.
최근 이상기후로 인한 강풍 및 태풍이 자주 발생하여 많은 인적, 물적 피해가 발생함에 따라 구조물 설계 시 적용하는 풍하중 산정에 관한 연구의 중요성이 강조되고 있다. 지형에 따른 풍속지형계수의 증가는 풍속의 증가를 의미하며 풍속의 증가는 제곱에 비례하여 풍하중에 영향을 미치기 때문에 풍속지형계수 산정을 위한 지리정보를 정확하게 측정하는 것이 필요하다. 따라서, 본 연구에서는 BIM(Building Information Modeling) 프로그램인 ArchiCAD를 이용하여 정확하고 합리적인 풍속지형계수 산정 방법을 제시하고자 한다. 풍하중을 고려한 구조물 설계 시 본 연구에서 제안한 방법을 이용함으로서 설계의 합리성과 경제성을 더 높일 수 있을 것이다.
To determine the wind turbine class in the offshore of the Korean Peninsula, the reference wind speed for a 50-y return period at the hub height of a wind turbine was estimated using the reanalysis data sets. The most recent reanalysis data, ERA5, showed the highest correlation coefficient (R) of 0.82 with the wind speed measured by the Southwest offshore meteorological tower. However, most of the reanaysis data sets except CFSR underestimated the annual maximum wind speed. The gust factor of converting the 1 h-average into the 10 min-average wind speed was 1.03, which is the same as the WMO reference, using several meteorological towers and lidar measurements. Because the period, frequency, and path of typhoons invading the Korean Peninsula has been changing owing to the climate effect, significant differences occurred in the estimation of the extreme wind speed. Depending on the past data period and length, the extreme wind speed differed by more than 30% and the extreme wind speed decreased as the data period became longer. Finally, a reference wind speed map around the Korean Peninsula was drawn using the data of the last 10 years at the general hub-height of 100 m above the sea level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.