• Title/Summary/Keyword: Wind Power Outputs

Search Result 37, Processing Time 0.022 seconds

CFD Study on Aerodynamic Power Output of 6 MW Offshore Wind Farm According to the Wind Turbine Separation Distance (CFD를 활용한 6 MW 해상풍력발전단지의 풍력터빈 이격거리에 따른 공기역학적 출력 변화연구)

  • Choi, Nak-Joon;Nam, Sang-Hyun;Jeong, Jong-Hyun;Kim, Kyung-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1063-1069
    • /
    • 2011
  • This paper presents aerodynamic power outputs of wind turbine of 6 MW wind farm composed of 3 sets of 2 MW wind turbine according to the separation distance by using CFD. Layout design including offshore wind farm and onshore wind farm is key factor for the initial investment cost, annual energy production and maintenance cost. For each wind turbine rotor, not actuator disc model with momentum source but full 3-dimensional model is used for CFD and it has a great technical meaning. The results of this study can be applied to the offshore wind farm layout design effectively.

Application of Fuzzy PI Control Algorithm as Stator Power Controller of a Double-Fed Induction Machine in Wind Power Generation Systems

  • Chung, Gyo-Bum;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2009
  • This paper addresses the output control of a utility-connected double-fed induction machine (DFIM) for wind power generation systems (WPGS). DFIM has a back-to-back converter to control outputs of DFIM driven by the wind turbine for WPGS. To supply commercially the power of WPGS to the grid without any problems related to power quality, the real and reactive powers (PQ) at the stator side of DFIM are strictly controlled at the required level, which in this paper is realized with the Fuzzy PI controller based on the field orientation control. For the Sinusoidal Pulse Width Modulation (SPWM) converter connected to the rotor side of DFIG to maintain the controllability of PQ at the state side of DFIM, the DC voltage of the DC link capacitor is also controlled at a certain level with the conventional Proportion-Integral (PI) controller of the real power. In addition, the power quality at the grid connected to the rotor side of DFIM through the back-to-back converter is maintained in a certain level with a PI controller of the reactive power. The controllers for the PQ at the stator side of DFIM, the DC link voltage of the back-to-back inverter and the reactive power at the grid connected to the rotor side of DFIM are designed and simulated in the PSIM program, of which the result verifies the performance of the proposed controllers.

Loss Minimization Control for Induction Generators in Wind Power Systems Using Support Vector Regression

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.344-346
    • /
    • 2006
  • In this paper, a novel algorithm for increasing the steady state efficiency during light load operation of the induction generator that integrated with a wind power generation system is presented. The proposed algorithm based on the flux level reduction, where the flux level is estimated using Support-Vector -Machines for regression (SVR) for the optimum d-axis current of the generator. SVR is trained off-line to estimate the unknown mapping between the system's inputs and outputs, and then is used online to calculate the optimum d-axis current for minimizing generator loss. The experimental results show that SVR can define the flux-power loss accurately and determine the optimum d-axis current value precisely. The loss minimization process is more effective at low wind speed and the percent of power saving can approach to 40%.

  • PDF

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

An Adaptive Overcurrent Relay for a Wind Power Generator Having Variable Outputs (풍력발전기의 출력변화에 따른 적응형 과전류계전기)

  • Choi, Dong-Min;Kwon, Young-Jin;Lee, Dong-Kyu;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.99-101
    • /
    • 2005
  • This paper presents an adaptive overcurrent relay applied to interconnecting wind generators in distribution networks. When a fault occurs in the case of the decreasing the wind power generator output, the conventional overcurrent relay can't detect the fault. The suggested adaptive overcurrent relay can detect. An adaptive overcurrent relay improves reliability and security of the power system protection with distributed generator APSCAD/EMTDC simulation results have shown effectiveness of the proposed method.

  • PDF

Energy harvesting using an aerodynamic blade element at resonant frequency with air excitation

  • Bolat, Fevzi C.;Sivrioglu, Selim
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.379-390
    • /
    • 2019
  • In this research, we propose an energy harvesting structure with a flexible blade element vibrating at its first mode to maximize the power output of the piezoelectric material. For this purpose, a piezoelectric patch was attached on the blade element used in a small-scale wind turbine, and air load was applied with a suitable angle of attack in the stall zone. The aerodynamic load created by air excitation vibrates the blade element in its first natural frequency and maximizes the voltage output of the piezoelectric patch. The variation of power outputs with respect to electrical resistance, air speed, and extra mass is experimentally investigated for various cases. An analytical model is constituted using a single-mode blade element with piezoelectric patch dynamics, and the power outputs of the obtained model are compared with experimental results.

A Study on the Fault Current of Distribution System according to Connection of Wind Turbine Generation Grid-Connected Transformer (풍력발전 계통연계 변압기의 결선에 따른 배전계통의 고장전류에 관한 연구)

  • An, Hae-Joon;Ro, Kyoung-Soo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.369-371
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Simulation for fault current of wind turbine generating system following transformer winding connection (변압기결선에 따른 풍력발전시스템의 고장전류에 대한 시뮬레이션)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.454-457
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by MARTLB & SIMULINK. The simulation shall be performed by assuming single line to ground fault generated in the system Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

An Analysis on the Value Chain and the Value System of the Korean Wind Power Industry (한국 풍력산업의 가치사슬 및 가치시스템 분석)

  • Ryu, Jae-Ho;Choi, Ta-Gwan;Park, Jung-Gu
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.46-57
    • /
    • 2014
  • This study analyzes whether the value-added structure of Korean wind power industry exhibits a virtuous cycle through the value chain(VC) within wind power firms and the value system(VS) among the wind power industries, using a regression analysis based on a survey about Korean wind power companies. According to the VC, the government's R&D support is analyzed to have contributed to an increase in the R&D investments of the wind power companies. An increase in corporates' R&D investments has led to an increase in corporates' R&D outputs, and in turn, induced a remarkable increase in the amounts of production. But an increase in production has not led to a decrease in the costs of production, not resulting in an increase in profit rates per sales amount. In addition, while an increase in profit rates is analyzed to have contributed to an increase in production, this did not induce further investments in corporate's R&D. The virtuous cycle of the value chain in Korean wind power firms is, therefore, analyzed to be weak. Next, the VS is analyzed by dividing the whole chain into the system group including rotor blades, gear boxes, and power generators, and the structure group, such as towers. Two groups are analyzed to have mutually positive effects in the processes of the government's support for corporates' R&D, corporates' investment in R&D, R&D outputs, and profit rates per sales amount. Such mutual positive effects are, however, not found in the processes of the amounts of production and the costs of production. These results demonstrates that the value system of Korean wind power industry is not completed. This study has a policy implication to need further efforts to create the virtuous cycle in the VC and VS of Korean wind power industry.

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.