• 제목/요약/키워드: Wind Power Fluctuation

검색결과 94건 처리시간 0.027초

Operation Scheme for a Wind Farm to Mitigate Output Power Variation

  • Lee, Sung-Eun;Won, Dong-Jun;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.869-875
    • /
    • 2012
  • Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to improve power system reliability and power quality. This paper proposes three operation modes of wind farms such as maximum power point tracking (MPPT) mode, single wind turbine control mode and wind farm control mode to control the output power of wind turbines as well as overall wind farms. This paper also proposes an operation scheme of wind farm to alleviate power fluctuation of wind farm by choosing the appropriate control mode and coordinating multiple wind turbines in consideration of grid conditions. The performance of the proposed scheme is verified via simulation studies in PSCAD/EMTDC with doubly-fed induction generator (DFIG) based wind turbine models.

단기 평균값을 이용한 풍력발전 출력 평활화 제어 효과 분석 (Analysis on the Effectiveness of Wind Power Fluctuation Based on Short-term Average Power)

  • 윤태섭;김일환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 추계학술대회 논문집
    • /
    • pp.206-207
    • /
    • 2016
  • The intermittent characteristics of wind power (WP) may have negative effect on grid stability, especially in weak grid. WP fluctuation rate can be reduced by using energy storage system (ESS) through charging and discharging. The operation of ESS will decide its losses and lifetime of batteries. From this point, this paper proposes WP smoothing control by using short-term average of WP. In this case, the ESS will only operate at high WP fluctuation rate. Then, the output power of ESS will be estimated by short-term average value. The effectiveness of proposed method will be verified by comparing with conventional method. The simulation results will be carried out by using Matlab program.

  • PDF

풍력발전의 출력 변동 저감을 위한 ESS 최소용량 산정기법 (Method of Minimizing ESS Capacity for Mitigating the Fluctuation of Wind Power Generation System)

  • 김재홍;강명석;김일환
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.119-125
    • /
    • 2011
  • In this paper, we have studied about minimizing the Energy Storage System (ESS) capacity for mitigating the fluctuation of Wind Turbine Generation System (WTGS) by using Electric Double Layer Capacitor (EDLC) and Battery Energy Storage System (BESS). In this case, they have some different characteristics: The EDLC has the ability of generating the output power at high frequency. Thus, it is able to reduce the fluctuation of WTGS in spite of high cost. The BESS, by using Li-Ion battery, takes the advantage of high energy density, however it is limited to use at low frequency response. To verify the effectiveness of the proposed method, simulations are carried out with the actual data of 2MW WTGS in case of worst fluctuation of WTGS is happened. By comparing simulation results, this method shows the excellent performance. Therefore, it is very useful for understanding and minimizing the ESS capacity for mitigating the fluctuation of WTGS.

Adaptive Gain-based Stable Power Smoothing of a DFIG

  • Lee, Hyewon;Hwang, Min;Lee, Jinsik;Muljadi, Eduard;Jung, Hong-Ju;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2099-2105
    • /
    • 2017
  • In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. The simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.

인공신경망 기반의 풍력발전기 발전량 예측에 관한 연구 (Study on the Prediction of wind Power Generation Based on Artificial Neural Network)

  • 김세윤;김성호
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1173-1178
    • /
    • 2011
  • The power generated by wind turbines changes rapidly because of the continuous fluctuation of wind speed and direction. It is important for the power industry to have the capability to predict the changing wind power. In this paper, neural network based wind power prediction scheme which uses wind speed and direction is considered. In order to get a better prediction result, compression function which can be applied to the measurement data is introduced. Empirical data obtained from wind farm located in Kunsan is considered to verify the performance of the compression function.

에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안 (Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System)

  • 오웅진;이연찬;최재석;임진택
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

풍력발전기와 BESS를 결합한 전력계통의 공급신뢰도 기여함수 (Development of Reliability Contribution Function of Power System including Wind Turbine Generators combined with Battery Energy Storage System)

  • 오웅진;이연찬;최재석;윤용범;장병훈;차준민
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.371-381
    • /
    • 2016
  • This paper presents a study on reliability assessment and new contribution function development of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). This paper develops and proposes new reliability contribution function of BESS installed at wind farms. The methodology of reliability assessment, using Monte Carlo Simulation(MCS) method to simulate sample state duration, is proposed in detail. Forced Outage Rate(FOR) considered probabilistic approach for conventional generators is modelled in this paper. The penetration of large wind power can make risk to power system adequacy, quality and stability. Although the fluctuation of wind power, BESS installed at wind farms may smooth the wind power fluctuation. Using small size system as similar as Jeju island power system, a case study of reliability evaluation and new proposed contribution function of power system containing WTG combined with BESS is demonstrated in this paper, which would contributes to BESS reliability contribution and assessment tools of actual power system in future.

제주지역 풍력발전기에 의한 전력계통운영 영향분석 (Power Network's Operation Influence Analysis of Wind Power Plant in Jeju island)

  • 김영환;최병천;장시호;김세호;좌종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.127-129
    • /
    • 2005
  • Construction of wind power plant is increasing rapidly because Jeju island is known as the most suitable place for wind power plant. Rut wind power plant is difficult electric power control and it has a rapid electric power fluctuation. Such a problem has a bad influence on electric power network in small electric network like Jeju. Therefore, we forecast the amount of wind power plant construction by weather information and the rate of utilization for existing facility. We investigate the contribution degree for electric Power demand, economic effect, the case of power network influence. So we forecast influence of wind power plant for Jeju power network's operation in the near future.

  • PDF

저 풍속 발전 시스템 구현에 관한 연구 (A Study on the realrization of Low Wind Generation)

  • 지명국;공태우;배철환;정한식;정효민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.891-896
    • /
    • 2001
  • The recent technology of Wind Power Generation in the world is rapidly developed better than the past time. The extra-large wind power generation system of the MW-class and the large wind power generation system of the hundreds kW-class were developed and became for common use. So, this paper is basic experiment for wind power generation at low wind, and aimed for small wind power generation system.

  • PDF

Simulink에서 풍력발전 연계시스템의 전압변동 시뮬레이션 (Simulation for voltage fluctuations of Grid-connected Wind Turbine Generators by Simulink)

  • 안덕근;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1389-1391
    • /
    • 2003
  • The development of wind turbine power generation has grown during the past ten years. An important question, when installing wind turbines with the generator connected directly to the grid, is holt much the voltage quality will be affected by the uneven power production and by the connection of the wind turbine to the grid. This paper presents the voltage fluctuation of grid-connected WTG(wind turbine generators) by MATLAB/Simulink.

  • PDF