• Title/Summary/Keyword: Wind Power Fluctuation

Search Result 94, Processing Time 0.022 seconds

Determination of the HESS Capacity for Mitigation of Fluctuation of Wind Farm Output under Consideration of Disconnecting Wind Farm (풍력발전단지 탈락 시를 고려한 단지 출력 변동 저감을 위한 HESS의 용량 산정)

  • Kim, SeongHyun;Ko, JiHan;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.388-389
    • /
    • 2013
  • This paper presents the method for the fluctuation smoothing control by using relaxation time variable control of battery. When the output power of wind farm is changed suddenly, it is necessary to control the output power of wind farm. The smoothing relaxation time is changed within limits of battery output power. Using the hybrid energy storage system (HESS) combined with battery energy storage system and electric double layer capacitor, it is possible to control the output power of wind farm. The capacity of battery is determined by considering the case of the disconnecting wind farm from the grid. To verify the proposed method, simulations are carried out by using PSCAD/EMTDC with actual data of wind farm in the Jeju Island.

  • PDF

Improved Frequency Mitigation of a Variable-Speed Wind Turbine (개선된 가변속 풍력발전기의 주파수 평활화)

  • Li, Mingguang;Yang, Dejian;Kang, Yong Cheol;Hong, Junhee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.695-701
    • /
    • 2018
  • For a power grid that has a high wind penetration level, when wind speeds are continuously fluctuating, the maximum power point tracking (MPPT) operation of a variable-speed wind turbine (VSWT) causes the significant output power fluctuation of a VSWT, thereby significantly fluctuating the system frequency. In this paper, an improved power-smoothing scheme of a VSWT is presented that significantly mitigates the frequency fluctuation caused by varying wind speeds. The proposed scheme employs an additional control loop based on the frequency deviation that operates in combination with the MPPT control loop. To improve the power-smoothing capability of a VSWT in the over-frequency section (OFS), the control gain of the additional loop, which is set to be inversely proportional to the rotor speed, is proposed. In contrast, the control gain in the under-frequency section is set to be proportional to the rotor speed to improve the power-smoothing capability while avoiding over-deceleration of the rotor speed of a VSWT. The proposed scheme significantly improves the performance of the power-smoothing capability in the OFS, thereby smoothing the frequency fluctuation. The results clearly demonstrate that the proposed scheme significantly mitigates the frequency fluctuation by employing the different control gain for the OFS under various wind penetration scenarios.

A Study on the Determining ESS Capacity for Stabilizing Power Output of Haeng-won Wind Farm in Jeju (제주 행원 풍력발전단지의 출력 안정화를 위한 에너지저장시스템 용량산정에 관한 연구)

  • Kang, Myeong-Seok;Jin, Kyung-Min;Kim, Eel-Hwan;Oh, Sung-Bo;Lee, Jeong-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • This paper presents the characteristics of power generation output at Haeng-won wind farm and how to determine the optimized ESS capacity for power stabilizing. Depend on the fluctuation rate of wind power output variation, wind farm capacity and site, power stabilization will be impacted. Therefore, we need to determine proper ESS capacity. Using the actual data of Haeng-won wind farm from 2009. 3 to 2010.2., capacity of ESS was determined by moving average value. To verify the proposed algorithm, simulations are carried out with PSCAD/EMTDC program. As a result, optimal ESS capacity of Haeng-won wind farm in Jeju is estimated about 1.63 MWh.

Wind Turbine Simulator Implementation Considering Tower Effect of Rotor Blade (풍력발전기 회전자 블레이드의 타워효과를 고려한 풍차 시뮬레이터의 구현)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.247-250
    • /
    • 2003
  • To get more realistic wind turbine torque characteristic, it is important to consider many parameters about wind turbine system. One of them is the tower effect which is occurred when a blade is bypassing the wind turbine tower and influences shaft torque fluctuation. In this paper, to emulate the similar torque performance of wind turbine, the wind turbine simulation and experiment with torque fluctuation by blade tower effect are implemented and verified. The simulation model is based on MATLAB Simulink.

  • PDF

Insulation Characteristics Evaluation of Submarine Cables Inside the J-Tube of Offshore Wind Farms (해상풍력단지 J-Tube 내부 해저케이블의 절연 특성 평가)

  • Seung-Won Lee;Jin-Wook Choe;Hae‑Jong Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.570-575
    • /
    • 2023
  • Demand and necessity for eco-friendly offshore wind farms have been increasing. Research on submarine cables is constantly being considered for a reliable and stable power transmission. This study aimed to evaluate the thermal aging characteristic of submarine cables inside the J-tube of offshore wind farms. In this study, a submarine cable was set in three sections: The first is the part exposed to the air above the sea level at high temperature. The second is the section exposed to repeated temperature fluctuation as the sea level rises and falls. The third is the part submerged at low temperature below the sea level. Aged samples were tested by using the method of electrical evaluation to obtain insulation characteristics. The experimental results show that the dielectric breakdown of the sample with temperature fluctuation was 7% lower than the sample with a constant temperature; thereby, demonstrating that the section where the temperature fluctuation occurred in the submarine cables was weaker than the other. The sections of submarine cable with temperature fluctuations are believed as a weak point during operation; therefore, this part should be monitored preferentially.

Analyzing effects of the BESS for wind farm in Jeju Island (제주지역 풍력발전단지의 BESS 적용효과 분석)

  • Lee, Doheon;Kim, Eel-Hwan;Kim, Ho-Min;Kim, Seung Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.67-74
    • /
    • 2014
  • The fluctuation of the output power of wind farms will be able to cause the impact on the Jeju power system such as power quality and stability. To settle the matter, many researchers have proposed the use of the BESS(Battery Energy Storage System) in the wind farm. In this paper, The BESS is applied to each wind farms for mitigating the fluctuation of wind power output. The BESS is controlled for smoothing the output of wind farms. Two kinds of simulation will be carried out. First, the simulation results by using PSCAD/EMTDC simulation program are compared to the measured data from the real power grid in Jeju Island. The other is to analyze the output of wind farms when the BESS is applied to the simulation works. The simulation results will demonstrate the effectiveness of using BESS to stabilize for power grid in Jeju Island.

Analysis of losses within SMES system for compensating output fluctuation of wind power farm

  • Park, S.I.;Kim, J.H.;Le, T.D.;Lee, D.H.;Kim, D.J.;Yoon, Y.S.;Yoon, K.Y.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.57-61
    • /
    • 2014
  • Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel (Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정)

  • Choi, Won-Yeon;Park, Gye-Do;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

Optimal Power Control Strategy for Wind Farm with Energy Storage System

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.726-737
    • /
    • 2017
  • The use of energy storage systems (ESSs) has become a feasible solution to solve the wind power intermittency issue. However, the use of ESSs increases the system cost significantly. In this paper, an optimal power flow control scheme to minimize the ESS capacity is proposed by using the zero-phase delay low-pass filter which can eliminate the phase delay between the dispatch power and the wind power. In addition, the filter time constant is optimized at the beginning of each dispatching interval to ensure the fluctuation mitigation requirement imposed by the grid code with a minimal ESS capacity. And also, a short-term power dispatch control algorithm is developed suitable for the proposed power dispatch based on the zero-phase delay low-pass filter with the predetermined ESS capacity. In order to verify the effectiveness of the proposed power management approach, case studies are carried out by using a 3-MW wind turbine with real wind speed data measured on Jeju Island.

Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System (출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법)

  • Kim, Yun-Seong;Moon, Dae-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.