• Title/Summary/Keyword: Wilcox's

Search Result 22, Processing Time 0.028 seconds

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS OF TWO- AND THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (2차원과 3차원 아음속 공동 유동 특성에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.187-193
    • /
    • 2007
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}\;-\;{\omega}$ turbulence model. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 for two-dimensional case, same aspect ratios with the W/D ratio of 2 for three-dimensional case. The Mach and Reynolds numbers are 0.53 and 1,600,000 respectively. The flow field is observed to oscillate in the "shear layer mode" with a feedback mechanism. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formula. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster.

  • PDF

Correlation of Proliferating Cell Nuclear Antigen (PCNA) Expression and S-phase Fraction, Survival Rate in Primary Non-Small Cell Lung Cancer (원발성 비소세포 폐암에서 PCNA의 발현정도와 암세포의 분열능 및 생존률과의 관계)

  • Yang, Sei-Hoon;Kim, Hak-Ryul;Gu, Ki-Seon;Jung, Byung-Hak;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.756-765
    • /
    • 1997
  • Background : To study the prognosis of patients with lung cancer, many investigators have reported the methods to detect cell proliferation in tissues including PCNA, thymidine autoradiography, flow cytometry and Ki-67. PCNA, also known as cyclin, is a cell related nuclear protein with 36KD intranuclear polypeptide that is maximally elevated in S phase of proliferating cells. In this study, PCNA was identified by paraffin-embedding tissue using immunohistochemistry which has an advantage of simplicity and maintenance of tissue architecture. The variation of PCNA expression is known to be related with proliferating fraction, histologic type, anatomic(TNM) stage, degree of cell differentiation, S-phase fraction and survival rate. We analyzed the correlation between PCNA expression and S-phase fraction, survival. Method : To investigate expression of PCNA in primary lung cancer, we used immunohistochemical stain to paraffin-embedded sections of 57 resected primary non-small cell lung cancer specimen and the results were analyzed according to the cell type, cell differentiation, TNM stage, S-phase fraction and survival. Results : PCNA expression was divided into five group according to degree of staging(-, +, ++, +++, ++++). Squamous cell type showed high positivity than in adenocarcinoma. Nonsignificant difference related to TNM stage was noticed. Nonsignificant difference related to degree of cell differentiation was noticed. S-phase fraction was increased with advance of PCNA positivity, but it could not reach the statistic significance. The 2 year survival rate and median survival time were -50% 13 months, +75% 41.3 months, ++73% 33.6 months, +++67% 29.0 months, ++++25% 9 months with statistic significance (P<0.05, Kaplan-Meier, generalized Wilcox). Conclusion : From this study, PCNA expression was high positive in squamous cell cancer. And, there was no relationship between PCNA positivity and TNM stage, cellular differentiation or S-phase fraction. But, the patients with high positive PCNA staining showed poor survival rate than the patients with lower positive PCNA staining (p<0.05). It was concluded that PCNA immunostaining is a simple and useful method for survival prediction in paraffin embedded tissue of non-small cell lung cancer.

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF

The Quality of Teacher-child Interactions by Teachers' Perception of Professionalism and Teaching Intentions (교사의 전문성 인식, 교수 의도 행동에 따른 교사-영유아 상호작용)

  • Ju, Hyun Jeong;Shin, Hye Won
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.2
    • /
    • pp.1-15
    • /
    • 2018
  • The purpose of this study was to determine if teachers' perception of professionalism, teaching intentions, and the quality of teacher-child interactions differed by teachers' education and career and how those variables were associated with one another. It was conducted in 50 teachers who were in charge of two- to five-year-olds at 22 national/public, private, and employer-supported childcare centers in Seoul and Gyeonggi Province. Arnett's (1989) Caregiver Interaction Scale (CIS) translated by Choi and Shin (2015) was used to measure the quality of teacher-child interactions, and the Current Status and Self-Desire for Professional Competence scale developed by Wang (2005) and translated and revised by Jeong (2016) was used to measure a teacher's perception of professionalism. The Teaching Intention Scale (TIS) developed by Wilcox-Herzog and Ward (2004) and translated and revised by the researcher was used to measure teaching intentions. The researcher and the research assistant personally visited the centers to observe the teachers for the quality of teacher-child interactions and a questionnaire for teachers was used to determine a teacher's perception of professionalism and teaching intentions. For data analysis, t-test and Pearson's product-moment correlation analysis were performed on the basis of the questions. The results of this study can be summarized as follows: First, the quality of teacher-child interactions differed insignificantly by education or career. Second, teacher's perception of professionalism differed significantly by teachers' career but differed insignificantly by education: the longer career, the better perception of professionalism. Third, teaching intentions differed insignificantly by education or career. Fourth, teachers with better perception of professionalism showed higher quality of teacher-child interaction. Fifth, The higher level of teaching intentions teachers showed the more sensitive interactions they made with children.

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.

Responses of Holstein Cows to Different Bovine Somatotropin (bST) Treatments during the Transition Period and Early Lactation

  • Gulay, M.S.;Garcia, A.N.;Hayen, M.J.;Wilcox, C.J.;Head, H.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.784-793
    • /
    • 2004
  • Major objective was to evaluate three doses of bST (POSILAC(R)) injected into Holstein cows during the transition period and through 56 d of lactation for potential to improve DMI, BCS, BW, metabolites, hormones, IGF-I and milk production. Biweekly injections of bST (0, 5.1, 10.2, or 15.3 mg bST/d) began 28 d before expected parturition and continued through 56 d postpartum. Twenty-three of the 25 multiparous Holstein cows assigned randomly to four groups completed experiment (7, 5, 6 and 5 cows/group, respectively). The DMI, BW and BCS were recorded weekly throughout the prepartum and postpartum periods and blood samples were collected thrice weekly for analyses of ST, insulin, $T_{4}$, $T_{3}$, IGF-I, glucose and NEFA. Milk yields were recorded daily through 60 d postpartum and milk components measured once weekly. Mathematical model for data analyses for prepartum and postpartum periods included treatment, calving month, and the two-factor interaction. Cows injected with 10.2 and 15.3 mg bST prepartum had greater mean prepartum concentrations of ST and IGF-I. Prepartum injections of bST did not affect prepartum BW or BCS. On average, cows injected postpartum better maintained their BCS during first 60 d of lactation (3.15$\pm$0.06, 3.12$\pm$0.007, 3.20$\pm$0.006 and 3.58$\pm$0.009). Treatments did not affect mean prepartum DMI but cows injected with 15.3 mg bST/d had greatest DMI and greatest mean daily MY during the first 3 wk and tended to be greater during first 60 d of lactation. Cows injected with two highest bST doses (10.1 and 15.2 mg/d) had greater mean postpartum concentrations of ST and $T_{3}$, but IGF-I, $T_{4}$, glucose and NEFA did not differ across groups. No adverse effects of bST treatment were observed.

Analysis of the criticality of the shipping cask(KSC-7) (KSC-7 사용후핵연료 수송용기 핵임계해석)

  • Yoon, Jung-Hyun;Choi, Jong-Rak;Kwak, Eun-Ho;Lee, Heung-Young;Chung, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.2
    • /
    • pp.47-59
    • /
    • 1993
  • The criticality of the shipping cask(KSC-7) for transportion of 7PWR spent fuel assemblies has been calculated and analysised on the basis of neutron transport theory. For criticality analysis, effects of the rod pitches, the fixed neutron absorbers(borated sus+boral) were considered. The effective multiplication factor has been calculated by KENO-Va, Mote Carlo method computer code, with the HANSEN-ROACH 16 group cross section set, which was made for personal computer system. The criticality for the KSC-7 cask was calculated in terms of the fresh fuel which was conservative for the aspects of nuclear critility. From the results of criticality analysis, the calculated Keff is proved to be lower than subcritical limit during normal transportation and under hypothetical accident condition. The maximum calculated criticalities of the KSC-7 were lower the safety criticality limit 1.0 recommended by US 10CFR71 both under normal and hypothetical accident condition. Also, to verify the KSC-7 criticality calculation results by using KENO-Va, it was carried out benchmark calculation with experimental data of B & W(Bobcock and Wilcox) company. From the 3s series of calculation of the KSC-7 cask and benchmark calculation, the cask was safely designed in nuclear criticality, respectively.

  • PDF

Multiparametric Cardiac Magnetic Resonance Imaging Detects Altered Myocardial Tissue and Function in Heart Transplantation Recipients Monitored for Cardiac Allograft Vasculopathy

  • Muhannad A. Abbasi;Allison M. Blake;Roberto Sarnari;Daniel Lee;Allen S. Anderson;Kambiz Ghafourian;Sadiya S. Khan;Esther E. Vorovich;Jonathan D. Rich;Jane E. Wilcox;Clyde W. Yancy;James C. Carr;Michael Markl
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • BACKGROUND: Cardiac allograft vasculopathy (CAV) is a complication beyond the first-year post-heart transplantation (HTx). We aimed to test the utility of cardiac magnetic resonance (CMR) to detect functional/structural changes in HTx recipients with CAV. METHODS: Seventy-seven prospectively recruited HTx recipients beyond the first-year post-HTx and 18 healthy controls underwent CMR, including cine imaging of ventricular function and T1- and T2-mapping to assess myocardial tissue changes. Data analysis included quantification of global cardiac function and regional T2, T1 and extracellular volume based on the 16-segment model. International Society for Heart and Lung Transplantation criteria was used to adjudicate CAV grade (0-3) based on coronary angiography. RESULTS: The majority of HTx recipients (73%) presented with CAV (1: n = 42, 2/3: n = 14, 0: n = 21). Global and segmental T2 (49.5 ± 3.4 ms vs 50.6 ± 3.4 ms, p < 0.001;16/16 segments) were significantly elevated in CAV-0 compared to controls. When comparing CAV-2/3 to CAV-1, global and segmental T2 were significantly increased (53.6 ± 3.2 ms vs. 50.6 ± 2.9 ms, p < 0.001; 16/16 segments) and left ventricular ejection fraction was significantly decreased (54 ± 9% vs. 59 ± 9%, p < 0.05). No global, structural, or functional differences were seen between CAV-0 and CAV-1. CONCLUSIONS: Transplanted hearts display functional and structural alteration compared to native hearts, even in those without evidence of macrovasculopathy (CAV-0). In addition, CMR tissue parameters were sensitive to changes in CAV-1 vs. 2/3 (mild vs. moderate/severe). Further studies are warranted to evaluate the diagnostic value of CMR for the detection and classification of CAV.