• Title/Summary/Keyword: Wigley Hull

Search Result 47, Processing Time 0.019 seconds

A Numerical Computation of Viscous Flow around a Wigley Hull For with Appendages (부가물이 부착된 Wigley선형 주위의 점성유동 해석)

  • Park, J.J.;Park, S.S.;Lee, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.39-47
    • /
    • 1997
  • In the present paper, viscous flow fields around a wigley hull with appendages are analysed to study interactions between the hull and appendages. Navier-Stokes and continuity equations are solved by a finite volume method in a body-fitted coordinate system which conforms three dimensional ship geometries with appendages. A Sub-Grid Scale(SGS) turbulent model is used for a calculation of high Reynolds number flow. Numerical computations has been done for a Wigley hull form at $Rn=1.0{\times}10^6$. The results show that the present approach can predict, at least in qualitative sense, the influence of the appendages upon the flow field around a ship.

  • PDF

Fundamental Study for the Development of an Optimum Hull Form (최적선형개발에 대한 기초연구)

  • Seo, Kwang-Cheol;Choi, Hee-Jong;Chun, Ho-Hwan;Kim, Moon-Chan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.37-42
    • /
    • 2003
  • Fundamental Study for optimizing ship hull form using SQP(sequential quadratic programming) method in a resistance point of view is presented. The Wigley hull is used as an initial hull and numerical calculations are carried out according to various froude numbers. To obtain the ship resistance the wave resistance is evaluated by a Rankine source panel method with nonlinear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of a hull surface is represented and modified by B-spline surface patch. The displacement and the waterplane transverse 2nd moment of inertia of the hull is fixed during the optimization process. And the shp design program called EzHULL is used to draw the lines of the optimized hull form to perform the model test.

  • PDF

Study for the Development of an Optimum Hull Form using SQP (SQP법을 이용한 최적선형개발에 대한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Kim, Sang-Hoon;Kim, Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60(C${_B}$=0.6) hull had been performed and the results obtained after the numerical calculations had been compared with the original hulls.

  • PDF

Study for the Development of an Optimum Hull Form using SQP (SQP법을 이용한 최적선형개발에 대한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Yun, Soon-Dong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.869-875
    • /
    • 2006
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP(sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verity the validity of the developed program the numerical calculations for Wigley hull and Series 60( $C_B=0.6$) hull have been performed and the results obtained by the numerical calculations have been compared with the original hulls.

Study on the Development of an Optimal Hull Form

  • Cho Hee-Jong;Lee Gyoung-Woo;Youn Soon-Dong;Chun Ho-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.603-609
    • /
    • 2005
  • This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP( sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verify the validity of the developed program the numerical calculations for Wigley hull and Series 60 Cb=0.6 hull are performed and the results obtained after the numerical calculations are compared with the initial hulls.

Numerical Investigation of Anti-Diffusion Source Term for Free-Surface Wave Flow

  • Park, Sunho;Lee, Heebum;Rhee, Shin Hyung
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.48-60
    • /
    • 2016
  • Accurate simulation of free-surface wave flows around a ship is very important for better hull-form design. In this paper, a computational fluid dynamics (CFD) code which is based on the open source libraries, OpenFOAM, was developed to predict the wave patterns around a ship. Additional anti-diffusion source term for minimizing a numerical diffusion, which was caused by convection differencing scheme, was considered in the volume-fraction transport equation. The influence of the anti-diffusion source term was tested by applying it to free-surface wave flow around the Wigley and KCS model ships. In results, the wave patterns and hull wave profiles of the Wigley and KCS model ships for various anti-diffusion coefficients showed quite close patterns. While, the band width of the water volume-fraction values between 0.1 to 0.9 at the Wigley and KCS model hull surfaces was narrowed by considering the anti-diffusion term. From the results, anti-diffusion source term decreased free-surface smearing.

Numerical Calculation of the Flow around a Ship by Means of Rankine Source Distribution (Rankine Source 분포를 이용한 선체주위 자유표면류의 수치계산)

  • Jae-Shin,Kim;Kwi-Joo,Lee;Soon-Won,Joa
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.32-42
    • /
    • 1990
  • The method using Rankine Soure distribution over the hull surface and undisturbed free surface was applied to calculate the free surface flow around a ship. The ship hull as well as a local portion of the undisturbed free surface arc geometrically represented by quadrilateral panels and the source density is determined so as to satisfy the linearized free surface condition based on the double model flow. The pressure distribution, wave resistance, wave profile and hydrodynamic sinkage force and trim moment for the Wigley hull and the Series 60 hull with $C_B=0.60$ were calculated in the fixed condition. The calculated results were compared with the measured values. The dependance of the solution on the panel arrangement, particularly on the free suraface, was also studied through 11 numerical test cases for the Wigley hull.

  • PDF

A Computational Method of Wave Resistance of Ships in Water of Finite Depth (유한수심에서의 조파저항계산에 관하여)

  • S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 1992
  • A computational method of the Michell integral for water of finite depth is developed and the method makes use of the expansion of the hull form by the Legendre polynomial in both the longitudinal and the vertical directions. The wave resistance coefficient is given as a quadruple summation of the product of the shape factor and the hydrodynamic factor. The shape factor depends only upon the geometry of the hull form, and the hydrodynamic factor upon the depth-based Froude number and the ratios of the water depth and the draft to the ship length. Example calculations are done for the Wigley parabolic hull and the Series 60 $C_B$ 0.6, and the comparison of our results with the existing experimental data is shown.

  • PDF

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF

Fundamental Study for the Development of an Optimum Hull Form (최적선형개발에 대한 기초연구)

  • 최희종;전호환;정석호
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.32-39
    • /
    • 2004
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP(sequential quadratic programming) to search for different optimal hull forms. The frictional resistance has been estimated using the ITTC 1957 model-ship correlation line formula, and the wave resistance has been evaluated using a potential-flow panel method that is based on Rankine sources with nonlinear free surface boundary conditions. The geometry of a hull surface has been modified using B-spline surface patches, during the whole optimization process. The numerical analyses have been carried out for the modified Wilgey hull at three different speeds (Fn=0.25, 0.316, 0.408), and the calculation results were compared.