• Title/Summary/Keyword: Width prediction model

Search Result 180, Processing Time 0.03 seconds

Optimizing Simulation of Wireless Networks Location for WiBRO Based on Wave Prediction Model (전파 예측 모델에 의한 와이브로 무선망 위치 선정의 최적화 시뮬레이션)

  • Roh, Su-Sung;Lee, Chil-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.587-596
    • /
    • 2008
  • For Wireless internet service in Metropolitan area, optimum location selection for base station and cell planning are critical process in determining service coverage by accurate prediction of Wave Propagation Characteristics. Due to different kinds of characteristics in service area such as lay of land, natural feature and material, height and width of artificially made building, it has a great impact on the transmission and distance recovery of wireless network service. Therefore, these facts may cause substantial barriers in predicting & analyzing the expected level of service quality and providing it to subscribers. In this thesis, we have simulated the process to improve quality and coverage of the service by adjusting the location of Base station and the antenna angle that influence the service after the basic location of base station is selected according to the wave prediction model. Based on this simulations test, we have demonstrated the results in which subscribers would get higher quality of wireless internet service along with bigger coverage and the improved quality in the same service coverage area through optimization process of base station.

The Fatigue Strength and the Fatigue Life Prediction in Plain Woven Glass/Epoxy Composite Plates (Glass/Epoxy 복합재료의 피로강도평가 및 피로수명예측)

  • 김정규;김도식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2475-2482
    • /
    • 1993
  • The effects of the hole size(2R) and the specimen width(W) on the fatigue strength and the fatigue life in plain woven glass/epoxy composite plates are experimentally investigated under constant amplitude tensile fatigue loading. It is shown in this study that the notch sensitivity under fatigue loading is lower than that under static loading. It can be explained by the fact that the stress concentration is relaxed by the damage developed at the boundary of circular hole. To predict the fatigue strength at a specific cycle, the modified point stress criterion represented as a function of the geometry of the specimen(2R and W) is applied. It is found that the model used in the prediction of the notched tensile strength predicts the fatigue strength with reasonable accuracy. A model for predicting the fatigue life in the notched specimen, based on the S-$N_f$, curve in the smooth specimen, is suggested.

SVM을 이용한 지구에 영향을 미치는 Halo CME 예보

  • Choe, Seong-Hwan;Mun, Yong-Jae;Park, Yeong-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

  • PDF

The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test

  • Erzin, Yusuf;Gul, T. Oktay
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.541-564
    • /
    • 2013
  • In this study, artificial neural networks (ANNs) were used to predict the settlement of pad footings on cohesionless soils based on standard penetration test. To achieve this, a computer programme was developed to calculate the settlement of pad footings from five traditional methods. The footing geometry (length and width), the footing embedment depth, $D_f$, the bulk unit weight, ${\gamma}$, of the cohesionless soil, the footing applied pressure, Q, and corrected standard penetration test, $N_{cor}$, varied during the settlement analyses and the settlement value of each footing was calculated for each method. Then, an ANN model was developed for each traditional method to predict the settlement by using the results of the analyses. The settlement values predicted from the ANN model were compared with the settlement values calculated from the traditional method for each method. The predicted values were found to be quite close to the calculated values. It has been demonstrated that the ANN models developed can be used as an accurate and quick tool at the preliminary designing stage of pad footings on cohesionless soils without a need to perform any manual work such as using tables or charts. Sensitivity analyses were also performed to examine the relative importance of the factors affecting settlement prediction. According to the analyses, for each traditional method, $N_{cor}$ is found to be the most important parameter while ${\gamma}$ is found to be the least important parameter.

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model (인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정)

  • Shin, Mun-Ju;Moon, Soo-Hyoung;Moon, Duk-Chul;Ryu, Ho-Yoon;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.485-493
    • /
    • 2021
  • Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.

Development of a model to predict Operating Speed (주행속도 예측을 위한 모형 개발 (2차로 지방부 도로 중심으로))

  • 이종필;김성호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.131-139
    • /
    • 2002
  • This study introduces a developed artificial neural networks(ANN) model as a more efficient and reliable prediction model in operating speed Prediction with the 85th percentile horizontal curve of two-way rural highway in the aspect of evaluating highway design consistency. On the assumption that the speed is decided by highway geometry features, total 30 survey sites were selected. Data include currie radius, curve length, intersection angle, sight distance, lane width, and lane of those sites and were used as input layer data of the ANN. The optimized model structure was drawn by number of unit of hidden layer, learning coefficient, momentum coefficient, and change in learning frequency in multi-layer a ANN model. To verify learning Performance of ANN, 30 survey sites were selected while data in obtained from the 20 cites were used as learning data and those from the remaining 10 sites were used as predictive data. As a result of statistical verification, the model D of 4 types of ANN was evaluated as the most similar model to the actual operating speed value: R2 was 85% and %RMSE was 0.0204.

The Study for Utilizing Data of Cut-Slope Management System by Using Logistic Regression (로지스틱 회귀분석을 이용한 도로비탈면관리시스템 데이터 활용 검토 연구)

  • Woo, Yonghoon;Kim, Seung-Hyun;Yang, Inchul;Lee, Se-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.649-661
    • /
    • 2020
  • Cut-slope management system (CSMS) has been investigated all slopes on the road of the whole country to evaluate risk rating of each slope. Based on this evaluation, the decision-making for maintenance can be conducted, and this procedure will be helpful to establish a consistent and efficient policy of safe road. CSMS has updated the database of all slopes annually, and this database is constructed based on a basic and detailed investigation. In the database, there are two type of data: first one is an objective data such as slopes' location, height, width, length, and information about underground and bedrock, etc; second one is subjective data, which is decided by experts based on those objective data, e.g., degree of emergency and risk, maintenance solution, etc. The purpose of this study is identifying an data application plan to utilize those CSMS data. For this purpose, logistic regression, which is a basic machine-learning method to construct a prediction model, is performed to predict a judging-type variable (i.e., subjective data) based on objective data. The constructed logistic model shows the accurate prediction, and this model can be used to judge a priority of slopes for detailed investigation. Also, it is anticipated that the prediction model can filter unusual data by comparing with a prediction value.

Analysis of Tidal Deflection and Ice Properties of Ross Ice Shelf, Antarctica, by using DDInSAR Imagery (DDInSAR 영상을 이용한 남극 로스 빙붕의 조위변형과 물성 분석)

  • Han, Soojeong;Han, Hyangsun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.933-944
    • /
    • 2019
  • This study analyzes the tide deformation of land boundary regions on the east (Region A) and west (Region B) sides of the Ross Ice Shelf in Antarctica using Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR). A total of seven Sentinel-1A SAR images acquired in 2015-2016 were used to estimate the accuracy of tide prediction model and Young's modulus of ice shelf. First, we compared the Ross Sea Height-based Tidal Inverse (Ross_Inv) model, which is a representative tide prediction model for the Antarctic Ross Sea, with the tide deformation of the ice shelf extracted from the DDInSAR image. The accuracy was analyzed as 3.86 cm in the east region of Ross Ice Shelf and it was confirmed that the inverse barometric pressure effect must be corrected in the tide model. However, in the east, it is confirmed that the tide model may be inaccurate because a large error occurs even after correction of the atmospheric effect. In addition, the Young's modulus of the ice was calculated on the basis of the one-dimensional elastic beam model showing the correlation between the width of the hinge zone where the tide strain occurs and the ice thickness. For this purpose, the grounding line is defined as the line where the displacement caused by the tide appears in the DDInSAR image, and the hinge line is defined as the line to have the local maximum/minimum deformation, and the hinge zone as the area between the two lines. According to the one-dimensional elastic beam model assuming a semi-infinite plane, the width of the hinge region is directly proportional to the 0.75 power of the ice thickness. The width of the hinge zone was measured in the area where the ground line and the hinge line were close to the straight line shown in DDInSAR. The linear regression analysis with the 0.75 power of BEDMAP2 ice thickness estimated the Young's modulus of 1.77±0.73 GPa in the east and west of the Ross Ice Shelf. In this way, more accurate Young's modulus can be estimated by accumulating Sentinel-1 images in the future.

Development of Prediction Model for Flexibly-reconfigurable Roll Forming based on Experimental Study (실험적 연구를 통한 비정형롤판재성형 예측 모델 개발)

  • Park, J.W.;Kil, M.G.;Yoon, J.S.;Kang, B.S.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.341-347
    • /
    • 2017
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.