• Title/Summary/Keyword: Width load

Search Result 1,044, Processing Time 0.028 seconds

Evaluation of Structural Behavior of Connections in Precast Arch Structures (프리캐스트 아치구조의 이음부 구조 거동 평가)

  • Shim, Chang Su;Kim, Dong Chan;Choi, Dae;Jin, Kyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.747-756
    • /
    • 2016
  • In this paper, a connection details for precast arch structures was proposed. Experiments were performed to evaluate structural performance of the loop connection details satisfying current design requirements and of alternative details for improvement of constructability. Precast arch specimens considering the current design requirements showed higher structural capacity than a cast-in-place arch specimen. Crack width at the connection of arch crown showed smaller value than 0.2 mm due to increased compression force by the applied vertical load. Strengthening by wire-mesh at notch area of the connection improved initial crack control capability. Connection detail with couplers and headed bars showed similar capacity to the reference specimen. The alternative details to improve constructability of reinforcements can be used without decreasing structural performance. Specimens with smaller internal diameter of mandrel and shorter loop splicing than the current design codes showed worse behavior in terms of crack width control.

A Study on the Crack Width of the Partially Prestressed Concrete Member with Rectangular Section (부분(部分)프리스트레스된 구형(矩形)콘크리트부재(部材)의 균열크기에 관한 연구(硏究))

  • Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.133-139
    • /
    • 1985
  • The purpese of this research is to experimentally verify the effect of prestressing on the control of cracks and on the possible increase of load capacity of the members by testing five beams with same cross section and same reinforcement ratio but with different amounts of prestressing. The test results indicate that the ultimate strength of prestressed concrete beams is only slightly higher than that of unprestressed concrete beams. It may be however need more experimental results to come to this conclusion. But it can be clearly seen that the effect of prestressing on the crack width is remarkable and that the reduction of about to 50% in crack width under service loads can be easily achieved by introducing small prestressing (about 25% of a fully prestressing).

  • PDF

Effects of Groove Shape Dimension on Lapping Characteristics of Sapphire Wafer (정반 그루브의 형상치수가 사파이어 기판의 연마특성에 미치는 영향)

  • Lee, Taekyung;Lee, Sangjik;Jeong, Haedo;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.119-124
    • /
    • 2016
  • In the sapphire wafering process, lapping is a crucial operation in order to reduce the damaged layer and achieve the target thickness. Many parameters, such as pressure, velocity, abrasive, slurry and plate, affect lapping characteristics. This paper presents an experimental investigation on the effect of the plate groove on the material removal rate and roughness of the wafer. We select the spiral pattern and rectangular type as the groove shapes. We vary the groove density by controlling the groove shape dimension, i.e., the groove width and pitch. As the groove density increases to 0.4, the material removal rate increases and gradually reaches a saturation point. When the groove density is low, the pressing load is mostly supported by the thick film, and only a small amount acts on the abrasives resulting to a low material removal rate. The roughness decreases on increasing the groove density up to 0.3 because thick film makes partial participations of large abrasives which make deep scratches. From these results, we could conclude that the groove affects the contact condition between the wafer and plate. At the same groove density, the pitch has more influence on reducing the film thickness than the groove width. By decreasing the groove density with a smaller pitch and larger groove width, we could achieve a high material removal rate and low roughness. These results would be helpful in understanding the groove effects and determining the appropriate groove design.

An Experimental Investigation of Boussinesq's Theoretical Value of Vertical Stress Increment in Sandy Soil Mass Caused by Surface Strip Loading (지표면 띠하중 재하에 따른 사질토지반 지중연직응력 증가량의 Boussinesq 이론값에 대한 실험적 고찰)

  • Lim Jong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.5-15
    • /
    • 2004
  • It is worthwhile to verify the vertical stress distribution in soil mass for rigorous design of foundation. A series of laboratory model tests were performed to investigate the Boussinesq's theory on vertical stress increment in sandy soil mass caused by surface loading. The test results were also compared with Boussinesq's theoretical values. The Boussinesq's theoretical values were always smaller than test results under the footing regardless of depth. Outside of the footing the values were larger than the measured stress at the depth of just footing width. The theory and the test showed similar results when the depth reached two and three times the footing width. The vertical stress decreased as the applied load increased. These trends were confirmed to be valid for the considered range of the relative density of sand and/or the width of footing. More accurate values can be acquired by correcting the theoretical values using these results when Boussinesq's theory is used.

Size Effects on the Compressive Strength of Composite Plates with an Open Hole (홀을 갖는 복합재 적층판의 압축강도에 대한 크기 효과에 관한 연구)

  • ;;;C. Soutis
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • Over two decades, many researchers have performed studies on strength size effects in composite laminates under tensile and flexural loads. It is well known that there is a tendency for the strength of fibre-reinforced composites to decrease with increasing specimen size. Under compressive load, however, little work has been done on the effect of specimen size to failure strength. This is due to the fact that compressive testing of composite is very difficult. In this paper, the effect of the test specimen size on the compressive strength of composites containing open hole was considered using T300/924C, $>[45/-45/0/90]_{3S}$. For sizing test specimens, the in-plane scaling method is used i.e., the change of two- dimensional specimen area in specimen width and gauge length. The results clearly show that there is a hole size effect in the finite width plates. In addition, the specimens which have the same a/W(hole diameter/specimen width) exhibit a tendency of size effect. In contrast, test results of the unnotched specimens did not show a clear strength size effect.

  • PDF

High-Efficiency CMOS PWM DC-DC Buck Converter (고효율 CMOS PWM DC-DC 벅 컨버터)

  • Kim, Seung-Moon;Son, Sang-Jun;Hwang, In-Ho;Yu, Sung-Mok;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.398-401
    • /
    • 2011
  • This paper presents a high-efficiency CMOS PWM DC-DC buck converter. It generates a constant output voltage(1-2.8V), from an input voltage(3.4-3.9V). Inductor-based type is chosen and inductor current is controlled with PWM operation. The designed circuit consists of power switch, Pulse Width Generation, Buffer, Zero Current Sensing, Current Sensing Circuit, Clock & Ramp generation, V-I Converter, Soft Start, Compensator and Modulator. Switching Frequency is 1MHz, It operates in CCM when the load current is more than 40mA, and the maximum efficiency is 98.71% at 100mA. Output voltage ripple is 0.98mV(input voltage:3.5V, output voltage:2.5V). The performance of the designed circuit has been verified through extensive simulation using a CMOS $0.18{\mu}m$ technology.

  • PDF

A STUDY ON AMALGAM CAVITY FRACTURE WITH TWO DIMENSIONAL FINITE ELEMENT METHOD I : VARIATION OF THE WIDTH OF CAVITY (아말감 와동의 파절에 관한 2차원 유한요소법적 연구 I : 와동 폭의 변화)

  • Kim, Han-Wook;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.655-669
    • /
    • 1995
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus is very important. In this study, amalgam 0 cavity was prepared on maxillary first premolar. Two dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2, 2/3 of intercuspal distance) were varied. Three or four-nodal mesh were used for the two dimensional finite element models. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. 1S model was sound tooth with no amalgam cavity. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed von Mises stress, 1 and 2 directional normal stress and Y and Z axis translation with FEM software Super SAPII Version 5.2 (Algor Interactive System Co.) and hardware 486 DX2 PC. The results were as :follows : 1. 1S model was slightly different with 1B model in stress distibution. 1S, 2B, 3B, 4B models showed similiar stress distribution. 2. 1S model and four B models showed similiar pattern in Y axis and Z axis translation. 3. 1S model and four B models showed the bending phenomenon in the translation. 4. As increasing of the width of the cavity, experimental group was similiar with the control group in stress distribution. 5. As increasing of the width of the cavity, experimental group was similiar with the control group in Y and Z axis tranlation.

  • PDF

FINITE ELEMENT STRESS ANALYSIS OF A TOOTH RESTORED WITH CAD/CAM CERAMIC INLAY (CAD/CAM 세라믹 인레이로 수복한 치아의 응력분포에 관한 유한요소법적 연구)

  • 송보경;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.6
    • /
    • pp.464-484
    • /
    • 2001
  • When restoring a tooth, the dentist tries to choose the ideal material for existing situation. One criterion that is considered is its suitability for restoring coronal strength. As more tooth structure is removed, the cusps are weakened and susceptible to fracture. Further, this increased deformation may cause the formation of intermittent gaps at the margin between the hard tissue and the restoration, facilitating marginal leakage. The improvements in ceramic materials now make it possible for alternatives to amalgams, composites, and cast metal to be of offered for posterior teeth. Of the materials used, ceramics most closely approximates the properties of enamel. The introduction of computer-aided design/computer-aided manufacture(CAD/CAM) systems to restorative dentistry represents a major technological breakthrough. It is possible to design and fabricate ceramic restorations at a single appointment. Additionally, CAD/CAM systems eliminate certain errors and inaccuracies that are inherent to the indirect method and provide an esthetic restoration. The aim of this investigation was to study the loading characteristics of CAD/CAM ceramic inlay and to compare the stress distribution and displacement associated with different designs of cavity(the isthmus width and cavity depth). A human maxillary left first premolar was prepared with standard mesio-occlusal cavity preparation, as recommended by the manufacturer Ceramic inlay was fabricated with CEREC 2 CAD/CIM equipment and cemented into the prepared cavity. Three dimensional model was made by the serial photographic method. The cavity width was varied $\frac{1}{3}$, $\frac{1}{2}$ and $\frac{2}{3}$ of intercuspal distance between buccal and lingual cusp tip. The cavity depth was varied 1.5mm and 2.3mm. So six models were constructed to simulate six conditions. A point load of 500N was applied vertically onto the first node of the lingual slope from the buccal cusp tip. The stress distribution and displacement were solved using ANSYS finite element program(Swanson Analysis System). (omitted)

  • PDF

Investigation of the Relationship Between Dishing and Mechanical Stress During CMP Process (수직하중에 의한 응력이 CMP 공정의 디싱에 미치는 영향)

  • Hyeong Gu Kim;Seung Hyun Kim;Min Woo Kim;Ik-Tae Im
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.30-34
    • /
    • 2023
  • Since dishing in the CMP process is a major factor that hinders the uniformity of the semiconductor thin film, many studies have focused this issue to improve the non-uniformity of the film due to dishing. In the metal layer, the dishing mainly occurs in the central part of the metal due to a difference in a selection ratio between the metal and the dielectric, thereby generating a step on the surface of the metal layer. Factors that cause dishing include the shape of the thin film, the chemical reaction of the slurry, thermal deformation, and the rotational speed of the pad and head, and dishing occurs due to complex interactions between them. This study analyzed the stress generated on the metal layer surface in the CMP process using ANSYS software, a commercial structure analysis program. The stress caused by the vertical load applied from the pad was analyzed by changing the area density and line width of the dummy metal. As a result of the analysis, the stress in the active region decreased as the pattern density and line width of the dummy metal increased, and it was verified that it was valid compared with the previous study that studied the dishing according to the dummy pattern density and line width of the metal layer. In conclusion, it was confirmed that there is a relationship between dishing and normal stress.

  • PDF

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.