• 제목/요약/키워드: Width function

검색결과 1,024건 처리시간 0.584초

207Pb nuclear magnetic resonance study in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals

  • Yeom, Tae Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • 제22권4호
    • /
    • pp.107-114
    • /
    • 2018
  • In this exploration, the nuclear magnetic resonance of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ Single Crystals using FT-NMR spectrometer is investigated. The line width of the resonance line for the $^{207}Pb$ nucleus decreases as temperature increases due to motional narrowing. The chemical shift of $^{207}Pb$ NMR spectra also increases as temperature decreases for both crystals. The spinlattice relaxation times $T_1$ of $^{39}K$ nucleus were calculated as a function of temperature (180 K~400 K). The $T_1$ of $^{207}Pb$ nucleus decreases as temperature increases. The dominant relaxation mechanism at the studied temperature range can be deduced as the Raman process, which is the coupling between lattice vibrations and the nuclear spins. This deduction is substantiated by the fact that the nuclear spin-lattice relaxation rate $1/T_1$ of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystal is proportional to $T^2$, or temperature squared. The activation energies for the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystals are $E_a=49{\pm}1meV$ and $E_a=47{\pm}2meV$, respectively.

Characterization of AlN Thin Films Grown by Pulsed Laser Deposition with Various Nitrogen Partial Pressure (다양한 질소분압에서 펄스레이저법으로 성장된 AlN박막의 특성)

  • Chung, J.K.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • 제28권1호
    • /
    • pp.43-48
    • /
    • 2019
  • Aluminum nitride (AlN) is used by the semiconductor industry, and is a compound that is required when manufacturing high thermal conductivity. The AlN films with c-axis orientation and thermal conductivity characteristic were deposited by using the Pulsed Laser Deposition (PLD). The AlN thin films were characterized by changing the deposition conditions. In particular, we have researched the AlN thin film deposited under optimal conditions for growth atmosphere. The epitaxial AlN films were grown on sapphire ($c-Al_2O_3$) single crystals by PLD with AlN target. The AlN films were deposited at a fixed temperature of $650^{\circ}C$, while conditions of nitrogen ($N_2$) pressure were varied between 0.1 mTorr and 10 mTorr. The quality of the AlN films was found to depend strongly on the $N_2$ partial pressure that was exerted during deposition. The X-ray diffraction studies revealed that the integrated intensity of the AlN (002) peak increases as a function the corresponding Full width at half maximum (FWHM) values decreases with lowering of the nitrogen partial pressure. We found that highly c-axis orientated AlN films can be deposited at a substrate temperature of $650^{\circ}C$ and a base pressure of $2{\times}10^{-7}Torr$ in the $N_2$ partial pressure of 0.1 mTorr. Also, it is noted that as the $N_2$ partial pressure decreased, the thermal conductivity increased.

Development of Slim-Fit Pants Pattern for Obese Male Adolescents (비만 남자 청소년의 슬림핏 팬츠 패턴 개발)

  • Lim, Bo Yun;Kweon, Soo Ae;Kim, Jiyoung
    • Journal of Fashion Business
    • /
    • 제22권5호
    • /
    • pp.96-112
    • /
    • 2018
  • This study developed the pants pattern, that improved appearance and gesture functions in clothes to resolve inconveniences in case of activities with being adequate in fitness of slim-fit pants for obese adolescents. The slim-fit pants pattern was developed through the fitting test after designing and making the pattern of the experimental clothing A(c/pu; 99/1%) with the primary commercial clothing as basic prototype, through the fitting test and implementation of the experimental clothing, modified and supplemented secondarily, and through the fitting test of the second experimental clothing, modified and supplemented tertiary. In terms of findings, first, as a result of analyzing the commercial slim-fit pants, it is interpreted to have projected an optical illusion, that appears to be slim due to being narrow in width of the front panel when observed from the front of the pants. Second, in the fitting test of the first experimental clothing, the prototype of commercial clothing was understood to have improved butt, crotch, waist and femoral regions. Third, pattern design of the second experimental clothing was allowed to decline abdominal pressure, in case of the sitting position, by making the crotch line in the front panel short and by handling it with a yoke belt, and was processed a difference between waist and hip circumference in the back panel, with a rubber band in the whole waist part. Fourth, in the gesture function test of the third experimental clothing, high evaluation was received in every item excluding the knee region.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

A Mathematical Analysis of Automatic Balanced Placement of Icons in A Smartphone Launcher (스마트폰 런처에서 아이콘 자동 균형 배치의 수학적 분석)

  • Son, Kyung A;Eun, Seongbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제24권11호
    • /
    • pp.1457-1462
    • /
    • 2020
  • There are dozens of applications on the smartphone. The service application that manages the loading, deletion, and deployment of these applications is called a smartphone launcher, and various launchers are used. Some of the existing launchers provide a function to automatically place icons by analyzing user application usage patterns. In this paper, we present a method of automatically arranging icons so that the icons are balanced on the smartphone screen. The usefulness of our method is illustrated by some exaples. In this case, it is proved that in an m × n screen layout with a height of m and a width of n, if n is an odd number, the entire screen can always be arranged in a balanced manner regardless of the n value by mathematical induction method.

Analysis of Road-to-Stream Linkage Characteristics in a Mountain Catchment using the Discriminant Analysis (판별분석을 이용한 산악지역 도로-하천 연결 특성 분석)

  • Park, Sang-Hyoung;Park, Changyeol;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • 제27권2호
    • /
    • pp.147-158
    • /
    • 2011
  • This study analyzed the linkage characteristics between road runoff and the nearest streams in mountain regions using a discriminant analysis. The road-to-stream linkage is an important characteristic to evaluate whether the contaminant on road surface is transported directly into the nearby channel system. This study evaluated a total of 51 drainage outlets of mountain roads near the Soyanggang Dam. The linkage between road and stream, slope and width of road, and other information necessary for the discriminant analysis have been collected by in situ investigation and by analyzing the Digital Elevation Model. Finally, as independent variables in the discriminant analysis, the contributing road representing the road characteristics (similar to the runoff from the road drainage outlet) and the distance and slope of the connecting channel between road and nearest stream were selected. Among these three, the distance was found to have the highest discriminant power, the contributing road the lowest. Using the discriminant function derived, 40 out of 51 cases (78.4%) were correctly discriminated and the remaining 11 cases (21.6%) were wrongly discriminated. Reasons of wrongly discriminated cases were mainly due to change in drainage outlet direction, excessive runoff, change in road-to-stream path, etc. This result also indicates that the road-to-stream linkage can be introduced or prohibited by exactly the same way.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.

Association of Nose Size and Shapes with Self-rated Health and Mibyeong (코의 크기 및 형태와 자가건강, 미병과의 상관성)

  • Ahn, Ilkoo;Bae, Kwang-Ho;Jin, Hee-Jeong;Lee, Siwoo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제35권6호
    • /
    • pp.267-273
    • /
    • 2021
  • Mibyeong (sub-health) is a concept that represents the sub-health in traditional East Asian medicine. Assuming that the nose sizes and shapes are related to respiratory function, in this study, we hypothesized that the nose size and shape features are related to the self-rated health (SRH) level and self-rated Mibyeong severity, and aimed to assess this relationship using a fully automated image analysis system. The nose size features were evaluated from the frontal and profile face images of 810 participants. The nose size features consisted of five length features, one area feature, and one volume feature. The level of SRH and the Mibyeong severity were determined using a questionnaire. The normalized nasal height was negatively associated with the self-rated health score (SRHS) (partial ρ = -0.125, p = 3.53E-04) and the Mibyeong score (MBS) (partial ρ = -.172, p = 9.38E-07), even after adjustment for sex, age, and body mass index. The normalized nasal volume (ρ = -.105, p = 0.003), the normalized nasal tip protrusion length (ρ = -.087, p = 0.014), and the normalized nares width (ρ = -.086, p = .015) showed significant correlation with the SRHS. The normalized nasal area (ρ = -.118, p = 0.001), the normalized nasal volume (ρ = -.107, p = .002) showed significant correlation with the MBS. The wider, longer, and larger the nose, the lower the SRHS and MBS, indicating that health status can be estimated based on the size and shape features of the nose.

CFD simulation of cleaning nanometer-sized particulate contaminants using high-speed injection of micron droplets (초고속 미세 액적 충돌을 이용한 나노미터 크기 입자상 오염물질의 세정에 대한 CFD 시뮬레이션)

  • Jinhyo, Park;Jeonggeon, Kim;Seungwook, Lee;Donggeun, Lee
    • Particle and aerosol research
    • /
    • 제18권4호
    • /
    • pp.129-136
    • /
    • 2022
  • The line width of circuits in semiconductor devices continues to decrease down to a few nanometers. Since nanoparticles attached to the patterned wafer surface may cause malfunction of the devices, it is crucial to remove the contaminant nanoparticles. Physical cleaning that utilizes momentum of liquid for detaching solid nanoparticles has recently been tested in place of the conventional chemical method. Dropwise impaction has been employed to increase the removal efficiency with expectation of more efficient momentum exchange. To date, most of relevant studies have been focused on drop spreading behavior on a horizontal surface in terms of maximum spreading diameters and average spreading velocity of drop. More important is the local liquid velocity at the position of nanoparticle, very near the surface, rather than the vertical average value. In addition, there are very scarce existing studies dealing with microdroplet impaction that may be desirable for minimizing pattern demage of the wafer. In this study, we investigated the local velocity distribution in spreading liquid film under various impaction conditions through the CFD simulation. Combining the numerical results with the particle removal model, we estimated an effective cleaning diameter (ECD), which is a measure of the particle removal capacity of a single drop, and presented the predicted ECD data as a function of droplet's velocity and diameter particularly when the droplets are microns in diameter.

The Kernohan-Woltman Notch Phenomenon : A Systematic Review of Clinical and Radiologic Presentation, Surgical Management, and Functional Prognosis

  • Beucler, Nathan;Cungi, Pierre-Julien;Baucher, Guillaume;Coze, Stephanie;Dagain, Arnaud;Roche, Pierre-Hugues
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.652-664
    • /
    • 2022
  • The Kernohan-Woltman notch phenomenon (KWNP) refers to an intracranial lesion causing massive side-to-side mass effect which leads to compression of the contralateral cerebral peduncle against the free edge of the cerebellar tentorium. Diagnosis is based on "paradoxical" motor deficit ipsilateral to the lesion associated with radiologic evidence of damage to the contralateral cerebral peduncle. To date, there is scarce evidence regarding KWNP associated neuroimaging patterns and motor function prognostic factors. A systematic review was conducted on Medline database from inception to July 2021 looking for English-language articles concerning KWNP, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The research yielded 45 articles for a total of 51 patients. The mean age was 40.7 years-old and the male/female sex ratio was 2/1. 63% of the patients (32/51) suffered from head trauma with a majority of acute subdural hematomas (57%, 29/51). 57% (29/51) of the patients were in the coma upon admission and 47% (24/51) presented pupil anomalies. KWNP presented the neuroimaging features of compression ischemic stroke located in the contralateral cerebral peduncle, with edema in the surrounding structures and sometimes compression stroke of the cerebral arteries passing nearby. 45% of the patients (23/51) presented a good motor functional outcome; nevertheless, no predisposing factor was identified. A Glasgow coma scale (GCS) of more than 3 showed a trend (p=0.1065) toward a better motor functional outcome. The KWNP is a regional compression syndrome oftentimes caused by sudden and massive uncal herniation and leading to contralateral cerebral peduncle ischemia. Even though patients suffering from KWNP usually present a good overall recovery, patients with a GCS of 3 may present a worse motor functional outcome. In order to better understand this syndrome, future studies will have to focus on more personalized criteria such as individual variation of tentorial notch width.