• Title/Summary/Keyword: Wideband Balun

Search Result 41, Processing Time 0.024 seconds

0.6~2.0 GHz Wideband Active Balun Using Advanced Phase Correction Architecture (진화된 위상보정 구조를 갖는 0.6~2.0 GHz 광대역 Active Balun 설계)

  • Park, Ji An;Jin, Ho Jeong;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.289-295
    • /
    • 2014
  • In this paper a wideband active balun using advanced phase correction architecture is proposed. The proposed active balun is constructed with each different architecture of active balun combined with the cascode architecture to improve phase correction performance compared with conventional phase correction techniques. Operating over 0.6~2.0 GHz band, the proposed balun shows $10^{\circ}$ of phase error and 2 dB of gain error with 7 mW power consumption from 1.8 V supply voltage.

Wideband and Compact Balun with Circular Slot and Stacked Structure (원형 슬롯과 유전체 적층 구조를 적용한 광대역 소형 발룬)

  • Cha, Seung Gook;Park, Chan Ju;Kim, Hyungrak;Yoon, Young Joong
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.132-136
    • /
    • 2017
  • In this paper, expanded lowest operating frequency by adopting circular slot on ground of balun and balance improved balance performances by stacking dielectric layer balun is proposed. Bandwidth of proposed balun is 1~7 GHz, and electrical length is $0.05{\lambda}$ at 1 GHz. In order to check performances of the proposed balun, simple dipole is integrated with the balun and radiation pattern of dipole is measured.

A wideband balun of tapered structure using planar microstrip

  • Chang, Tae-Soon;Chang, Rae-Kim;Hur, Jung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.35-38
    • /
    • 2005
  • In this paper, a wideband balun of tapered structure using planar microstrip is desigde ad analyzed. The balun structure was fabricated on a Teflon substrate with a thickness of 0.8mm and relative dielectric constant ${\varepsilon}_r$ of 2.5. Two back-to back CPW-to-CPS transitions were simulated and optimized using HFSS. A movel plaar balun using tapered structure of microstip to CPW is suggested and designed. The measurement result, the bandwidth for a reflection coefficient better than -10dB of the balun is 2GHz to 8GHz. The planar balun can improved the performance of wide band spiral antenna.

  • PDF

Self-Complementary Spiral Antenna Design Using a Ultra-Wideband Microstrip-to-CPS Balun (초광대역 마이크로스트립-CPS 발룬을 이용한 Self-Complementary 스파이럴 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.208-214
    • /
    • 2009
  • A design and its experimental result of a wideband self-complementary spiral antenna for UWB USPR(Ultrashort-Pulse Radar) system applications is presented. By utilizing the planar-type ultra-wideband microstrip-to-CPS balun, ultra-wideband characteristics of the inherent spiral antenna are retrieved. Also, the design procedure of the spiral antenna is simplified by performing simple impedance matching between separately designed balun and antenna. The proposed spiral antenna is equiangular self-complementary spiral antenna. The implemented antenna demonstrates widebaad performance for frequency ranges from 2.9 to 12 GHz with the relatively flat antenna gain of 2.7 to 5.3 dB and broad beamwidth of more than $70^{\circ}$. From these result, the possibility of a spiral antenna using a ultra-wideband microstrip-CPS balun is verified.

Design of a Ku-Band Quasi-Yagi Antenna Array Using an Ultra-Wideband Balun (초광대역 발룬을 이용한 Ku 대역 Quasi-Yagi 배열 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.207-213
    • /
    • 2008
  • A simplified design procedure for quasi-Yagi antenna arrays using an ultra-wideband balun is presented. The proposed antenna design procedure is based on the simple impedance matching among antenna components: i.e., balun, feed, and antenna This new broadband and high gain antenna array is possible due to the ultra-wideband performance of the balun. As design examples, wideband $1\times4$ and $1\times8$ quasi-Yagi antenna arrays are successfully designed and implemented in Ku-band with frequency bandwidths of about 50 % and antenna gains of 9$\sim$10 dBi and 11$\sim$12 dBi, respectively. And the simulated and measured results demonstrate wide bandwidths and good radiation properties. These antenna arrays can be applied to various phased-array and spatial power combining systems.

Design and Fabrication of a Wideband Single-Balanced-Mixer using Planar Balun (평판형 발룬을 이용한 단일 평형 광대역 주파수 혼합기의 설계 및 제작)

  • 김성민;정재호;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.90-98
    • /
    • 1999
  • This paper presents a wideband single-balanced mixer using a diode which can be used in RF receiver of microwave measurement systems. For wideband characteristic, local oscillator(LO) signal is provided to diode with low loss using a coplanar waveguide-to-slotline balun. For high isolation characteristic radio frequency (RF) port and intermediate frequency (IF) port are designed using directional coupler. This mixer presents 30.5~31.17dB conversion loss whose flatness is within 1dB for 9 kHz~2.6 GHz wideband RF signal, and above 30 dB isolation for LO signal.

  • PDF

Ultra-wideband Components Utilizing a Uniplanar Ultra-wideband Balun (단일평면 초광대역 발룬을 이용한 초광대역 부품)

  • Kim, Young-Gon;Woo, Dong-Sik;Kim, In-Bok;Song, Sun-Young;Kim, Kang-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.30-36
    • /
    • 2009
  • Various types of ultra-wideband components with 10's of GHz bandwidth have been developed utilizing a uniplanar ultra-wideband balun, which is a simple microstrip-to-coplanar stripline (CPS) transition structure with the operating frequency range from near DC to over 40 GHz. Developed ultra-wideband components include antennas, mixers, doublers, and detectors in a carrier type and in a surface mountable type. One of surface mountable components, for example, single balanced doubler has output frequency 8 ~ 28 GHz. These high-Performance, low-cost ultra-wideband components may replace expensive conventional components, and also can be used to develop new multi-GHz OWE application areas.

Monolithic SiGe Up-/Down-Conversion Mixers with Active Baluns

  • Lee, Sang-Heung;Lee, Seung-Yun;Bae, Hyun-Cheol;Lee, Ja-Yol;Kim, Sang-Hoon;Kim, Bo-Woo;Kang, Jin-Yeong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2005
  • The purpose of this paper is to describe the implementation of monolithically matching circuits, interface circuits, and RF core circuits to the same substrate. We designed and fabricated on-chip 1 to 6 GHz up-conversion and 1 to 8 GHz down-conversion mixers using a 0.8 mm SiGe hetero-junction bipolar transistor (HBT) process technology. To fabricate a SiGe HBT, we used a reduced pressure chemical vapor deposition (RPCVD) system to grow a base epitaxial layer, and we adopted local oxidation of silicon (LOCOS) isolation to separate the device terminals. An up-conversion mixer was implemented on-chip using an intermediate frequency (IF) matching circuit, local oscillator (LO)/radio frequency (RF) wideband matching circuits, LO/IF input balun circuits, and an RF output balun circuit. The measured results of the fabricated up-conversion mixer show a positive power conversion gain from 1 to 6 GHz and a bandwidth of about 4.5 GHz. Also, the down-conversion mixer was implemented on-chip using LO/RF wideband matching circuits, LO/RF input balun circuits, and an IF output balun circuit. The measured results of the fabricated down-conversion mixer show a positive power conversion gain from 1 to 8 GHz and a bandwidth of about 4.5 GHz.

  • PDF

A New Design Approach for Asymmetric Coupled-Section Marchand Balun

  • Park, Ji An;Cho, Choon Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.54-60
    • /
    • 2014
  • A systematic design for asymmetric coupled-section Marchand baluns is presented. Asymmetrically coupled transmission lines in multilayer configuration are exploited for constructing Marchand baluns. Design equations for characteristic impedance and electrical length of asymmetrical coupled transmission lines are derived for establishing a systematic design procedure. Novel Marchand balun based on these design equations is composed of two identical asymmetrical coupled transmission lines. However, contrary to the general conventional design approach where ranges for characteristic impedances of coupled lines are ambiguously capitalized, values for characteristic impedance and length are explicitly expressed. Our approach is fundamentally different from the design method using coupling coefficients where solution for coupling coefficient is inherently restricted. To verify the proposed method, one design example is performed for wideband Marchand balun in multilayer configuration, and is fabricated for verifying the design procedure proposed. Maintaining the return loss more than 10 dB, the bandwidth is measured from 0.43 to 1.0 GHz, where $S_{21}$ and $S_{31}$ show better than -4 dB. The measured phase and amplitude imbalances illustrate 0.5 dB and ${\pm}5^{\circ}$, respectively.

Design of Inductive coupled wideband LC Balun Embedded Into Organic Substrate (유기기판에 내장된 인덕터의 커플링을 이용한 광대역 LC 발룬의 설계)

  • Park, Jong-C.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1502-1503
    • /
    • 2007
  • In this paper, inductive coupled LC balun has been desi gned and simulated for embedding into an organic packaging substrate. Inductive coupling method was applied to obtain wide band characteristics, and high dielectric film was utilized to reduce a size of the balun. The proposed balun has a novel scheme which consists of three embedded LC resonators with inductive coupling. This proposed balun has relatively small inductance and capacitance values which can be easily embedded into the organic packaging substrate. Furthermore, it has a good phase imbalance characteristic. The simulated results of proposed balun are an insertion loss of 1.2 dB, a return loss of 10 dB, a phase imbalance of 1 degree at frequency bandwidth of 750 MHz ranged from 1.8 GHz to 2.55 GHz, respectively. This balun has an area of $2mm{\tims}3.5mm{\times}0.66mm$ (height).

  • PDF