• Title/Summary/Keyword: Wide-Band Isolation

Search Result 45, Processing Time 0.03 seconds

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

A dual-frequency and dual-polarization antenna with enhanced isolation between two ports using shorted metallic patches (Shorted metallic patch 를 이용하여 두 포트 사이의 고립도를 향상 시킨 이중대역 이중편파 안테나)

  • Lee, Dong-Hyun;Kim, Jae-Hee;Jang, Jong-Hun;Im, Yun-Taek;Park, Wee-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.67-68
    • /
    • 2006
  • A suspended microstrip line structure over mushroom-like SMPs is designed and is applied to a dual-frequency and dual-polarization microstrip patch antenna. This structure has a distinctive and sharp rejection band and provides near 0 dB insertion loss outside the rejection band. Applying the structure to the conventional DFDP antenna enhanced the isolation between the two ports more than 20 dB. The structure is expected to have a wide range of applications in antennas and filters due to its compactness and integrability in circuits.

  • PDF

Analysis of a Distributed Mixer Using Dual-gate MESFETSs (Dual-gate MESFET를 사용한 분포형 혼합기 해석에 관한 연구)

  • 김갑기;오양현;정성일;이종익
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.178-185
    • /
    • 1996
  • In this paper, a theoretical analysis of a wide band distributed mixer using a dual-gate GaAs MESFET's(DGFET) is introduced. Based on low noise mixer mode(LNM) region modeling of DGFET, variation of g/sub m/ and conversion gain are presented versus bias. The distributed mixer is composed of drain and gate transmission line, m-derived image impedance matching circuits at each input and output port, and DGFET's. Through computer simulation, wide-band characteristics of designed distributed mixer are confirmed. And, it is certificated that LO/RF isolation between gate 1 and gate 2 is obtained more than 15dB.

  • PDF

Design and Experiment of Waveguide Limiter with Band-Pass Characteristics Using PIN Diode (PIN 다이오드를 이용한 대역 통과 여파 특성을 갖는 리미터 설계 및 실험)

  • Park, Jun-Seo;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1065-1072
    • /
    • 2012
  • In this paper, the method of design of the waveguide band-pass filter and limiter in radar system is proposed. First, we design a self-resonant iris, which can behave as a band-pass filter by mounting the PIN diode on the iris. When low power microwave is incident on the proposed element, the element behaves as a band-pass filter. Under a high power microwave condition, however, the element behaves as a limiter having wide band stop characteristics. The fabricated element has a pass band with -0.7 dB insertion loss at 10 GHz under the low power condition and isolation about 25 dB under the high power condition.

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

A General Design Method for the Broadband Multi-Section Power Divider (광대역 다단 전력 분배기의 일반화된 설계 방법)

  • Park, Jun-Seok;Kim, Hyeong-Seok;Im, Jae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.85-91
    • /
    • 2002
  • A novel multi-section power divider configuration is Proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a Planar multi-section three-Ports hybrid and a waveguide transformer design procedures. The multi∼section power divider is based on design theory of the optimum quarter- wave transformer Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode∼matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Simulation and experiment show excellent performance of multi section power divider.

X-Band Balanced Mixer by MIC Magic-Tee (MIC Magic-Tee에 의한 X-Band Balanced Mixer)

  • 강영채
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.2
    • /
    • pp.71-77
    • /
    • 1982
  • This poper proposes the method of the balanced-mixer realization in the X-Band frequency range by the MIC coplanar magic-tee. This magic-tee is composed with microstrip and slot, as suggested by Ronde. The characteristics of balancing and isolation in this magic-tee is more preferable to those of the rat-race or hybrid ring in the wide frequency range. So, experimentally in this paper the characteristics of the MIC balanced-mixed are obtained with the VSWR less than 1, 2(in Local and Signal Arms) and the Conversion Loss, 6 dB in that frequency range, when the mixer is designed in the 3rd order (in E-arm) and 2nd order(in H-arm) Chebyshev matching networks, and with two symmetrical Schottkey Barrier Diodes.

  • PDF

Semi-lumped Balun Transformer using Coupled LC Resonators

  • Park, Jongcheol;Yoon, Minkyu;Park, Jae Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1154-1161
    • /
    • 2015
  • This paper presents a semi-lumped balun transformer using conventional PCB process and its design theory and geometry for the maximally flat response and wide bandwidth using magnetically coupled LC resonators. The proposed balun is comprised of two pairs of coupled resonators which share one among three LC resonators. It provides an identical magnitude and phase difference of 180° between two balanced ports with DC isolation and an impedance transformation characteristic. Theoretical design and analysis were performed to optimize the inductance and capacitance values of proposed balun device for obtaining the wide bandwidth and maximally flat response in its pass-band. Three balun transformers with a center frequency of 500 MHz were demonstrated for proving the concept of design proposed. They were fabricated by using lumped chip capacitors and planar inductors embedded into a conventional 4-layered PCB substrate. They exhibited a maximum magnitude difference of 0.8 dB and phase difference within 2.4 degrees.

Design and Fabrication of a Broadband RF Module for 2.4GHz Band Applications (2.4GHz 대역에서의 응용을 위한 광대역 RF모듈 설계 및 제작)

  • Yang Doo-Yeong;Kang Bong-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a broadband RF module is designed and tested for 2.4GHz band applications. The RF module is composed of a low noise amplifier (LNA) with a three stage amplifier, a single ended gate mixer, matching circuits, a hairpin line band pass filter and a Chebyshev low pass filter to convert the radio frequency (RF) into the intermediate frequency (IF). The LNA has a high gain and stability, and the single ended gate mixer has a high conversion gain and wide dynamic range. In the analysis of the broadband RF module, the composite harmonic balance technique is used to analyze the operating characteristics of an RF module circuit. The RF module has a 55.2dB conversion gain with a 1.54dB low noise figure, $-120{\sim}-60dBm$ wide RF power dynamic range, -60dBm low harmonic spectrum and a good isolation factor among the RF, IF, and local oscillator (LO) ports.

  • PDF

Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators (ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어)

  • Choi, Seung-Hoon;Choi, Young-Tai;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.