• Title/Summary/Keyword: WiFi Extender

Search Result 2, Processing Time 0.02 seconds

Implementation of portable WiFi extender using Raspberry Pi (라즈베리파이를 이용한 이동형 와이파이 확장기 구현)

  • Jung, Bokrae
    • Journal of Industrial Convergence
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2022
  • In schools and corporate buildings, public WiFi Access Points are installed on the ceilings of hallways. In the case of an architectural structure in which a WiFi signal enters through a steel door made of a material with high signal attenuation, Internet connection is frequently cut off or fails when the door is closed. To solve this problem, our research implements an economical and portable WiFi extender using a Raspberry Pi and an auxiliary battery. Commercially available WiFi extenders have limitations in the location where the power plug is located, and WiFi extension using the WiFi hotspot function of an Android smartphone is possible only in some high-end models. However, because the proposed device can be installed at the position where the Wi-Fi reception signal is the best inside the door, the WiFi range can be extended while minimizing the possibility of damage to the original signal. Experimental results show that it is possible to eliminate the shadows of radio waves and to provide Internet services in the office when the door is closed, to the extent that web browsing and real-time video streaming for 720p are possible.

Development of Stable Walking Robot for Accident Condition Monitoring on Uneven Floors in a Nuclear Power Plant

  • Kim, Jong Seog;Jang, You Hyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.632-637
    • /
    • 2017
  • Even though the potential for an accident in nuclear power plants is very low, multiple emergency plans are necessary because the impact of such an accident to the public is enormous. One of these emergency plans involves a robotic system for investigating accidents under conditions of high radiation and contaminated air. To develop a robot suitable for operation in a nuclear power plant, we focused on eliminating the three major obstacles that challenge robots in such conditions: the disconnection of radio communication, falling on uneven floors, and loss of localization. To solve the radio problem, a Wi-Fi extender was used in radio shadow areas. To reinforce the walking, we developed two- and four-leg convertible walking, a floor adaptive foot, a roly-poly defensive falling design, and automatic standing recovery after falling methods were developed. To allow the robot to determine its location in the containment building, a bar code landmark reading method was chosen. When a severe accident occurs, this robot will be useful for accident condition monitoring. We also anticipate the robot can serve as a workman aid in a high radiation area during normal operations.