• 제목/요약/키워드: Wi-Fi Positioning System

검색결과 90건 처리시간 0.018초

WPS(WiFi Positioning System & Service) 동향 (The Trend of WPS(WiFi Positioning System & Service))

  • 정승혁;신현식
    • 한국전자통신학회논문지
    • /
    • 제6권3호
    • /
    • pp.433-438
    • /
    • 2011
  • 본 논문에서는 이동통신망을 이용한 WiFi 위치 측위기술 및 서비스에 대해 소개해 보고자 한다. 또한, 본 논문에서는 이동통신망을 이용한 WPS(WiFi Positioning System)의 기본적인 기술요소 및 품질요소 등을 살펴보고자 한다. 위 이동통신 기반의 위치서비스를 제공할 때 단말의 위치 결정 기술을 통하여 사용자 또는 가입자에게 편리성을 제공해 줄 뿐만 아니라 위치기반서비스 산업활동에 대하여 많은 기여를 할 것으로 본다.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

가시광 통신을 이용한 실내 사용자 단말 탐지 시스템 (Performance of Indoor Positioning using Visible Light Communication System)

  • 박영식;황유민;송유찬;김진영
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권1호
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting 시스템은 실내에서 사용되는 위치 측위 방법이며 AP(Access Point)에서 발생하는 RSS(Received Signal Strength)에 의존한다. AP로부터의 RSS는 벽, 장애물 그리고 사람에 의한 간섭과 다중경로 페이딩 효과에 의하여 변할 수 있기 때문에 Wi-Fi fingerprinting 시스템은 낮은 측위 정확도를 갖는다. 또한, Wi-Fi 신호는 벽을 통과하기 때문에 기존의 시스템은 사용자가 현재 위치해 있는 층을 구분하기 어렵다. 이러한 단점을 극복하기 위하여 본 논문은 정확한 실내 측위를 위한 LED fingerprinting 시스템을 제안한다. 제안된 시스템은 LED로부터 발생하는 LED-ID와 LED의 광 파워를 사용한다. 본 시스템의 Training 단계에서는 각 장소에 해당하는 Fingerprinting을 데이터베이스에 기록한다. Serving 단계에서는 K-NN(K-Nearest Neighbor) 알고리즘을 적용하여 기존의 데이터와 새롭게 수신되는 사용자의 데이터를 비교한다. 컴퓨터 시뮬레이션을 통해 CDF(Cumulative Distribution Function) 형태로 본 시스템의 성능을 나타내었고, 시뮬레이션 결과로부터 제안된 시스템은 평균 측위 정확도보다 8.6% 높은 정확도를 얻을 수 있다.

실내에서 Wi-Fi를 이용한 위치 정보 시스템의 설계 및 구현 (The Design and Implementation of Location Information System using Wireless Fidelity in Indoors)

  • 권오병;김경수
    • 디지털융복합연구
    • /
    • 제11권4호
    • /
    • pp.243-249
    • /
    • 2013
  • 본 논문에서는 GPS(Global Positioning System)를 사용할 수 있는 실외와 GPS(Global Positioning System)를 사용할 수 없는 실내에서 Wi-Fi(Wireless Fidelity)를 이용한 안드로이드 기반의 위치 정보 시스템을 설계 및 구현하였다. 보행자의 위치를 실내에서 추정하기 위해서는, 보행자의 위치에 상관없이 절대위치를 구하는 것이 필요하고, 보행자의 움직임에 따라서 상대위치를 연속적으로 추정하는 것이 필요하다. 보행자의 초기위치를 추정하기 위해서 Wi-Fi fingerprinting을 사용하였다. 기존의 Wi-Fi fingerprinting에서 가장 위치 오차가 작은 WKNN(Weighted K Nearest Neighbor) 알고리즘의 단점을 보완한 EWKNN(Enhanced Weighted K Nearest Neighbor) 알고리즘을 사용해 위치의 정확도를 높였다. 그리고 보행자의 상대위치를 추정하기 위해서는, 스마트폰에 탑재되어 있는 IMU(Inertial Measurement Unit)를 사용하였기 때문에 추가적인 장비가 필요하지 않았다.

WiFi 핑거프린트 위치추정 방식에서 W-KNN의 가중치에 관한 연구 (A Study on the Weight of W-KNN for WiFi Fingerprint Positioning)

  • 오종택
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.105-111
    • /
    • 2017
  • 본 논문에서는 최근 들어 활발하게 연구되고 있는 WiFi fingerprint를 이용한 실내 위치 인식 기술에서, Weighted K-Nearest Neighbour 방식을 적용할 때 사용되는 가중치에 대한 분석 결과를 보이고 있다. W-KNN 방식은 그 간결함에도 불구하고 WiFi fingerprint를 이용하는 다른 복잡한 방식들과 유사한 성능을 보이고 있어, 실제적으로 실내 위치 인식 기술로 많이 사용되고 있다. 또한 사전 데이터 처리 방식이나 이 방식에서 사용되는 가중치에 따라 성능 차이를 보이고 있으므로, 이에 대한 연구 및 분석은 중요한 의미가 있다. 여기서는 실제로 측정된 WiFi fingerprint 데이터를 기반으로, 데이터 사전처리 경우와 가중치에 측정값의 분산 및 거리를 적용하는 경우, 지점 위치 평균 개수 K를 사용하는 경우 등에 대해 위치 추정 오차를 분석하고 성능을 비교한다. 이 연구 결과는 실제로 실내 위치 인식 시스템을 구축할 때에 실용적으로 활용될 수 있다.

Unlabeled Wi-Fi RSSI Indoor Positioning by Using IMU

  • Chanyeong, Ju;Jaehyun, Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.37-42
    • /
    • 2023
  • Wi-Fi Received Signal Strength Indicator (RSSI) is considered one of the most important sensor data types for indoor localization. However, collecting a RSSI fingerprint, which consists of pairs of a RSSI measurement set and a corresponding location, is costly and time-consuming. In this paper, we propose a Wi-Fi RSSI learning technique without true location data to overcome the limitations of static database construction. Instead of the true reference positions, inertial measurement unit (IMU) data are used to generate pseudo locations, which enable a trainer to move during data collection. This improves the efficiency of data collection dramatically. From an experiment it is seen that the proposed algorithm successfully learns the unsupervised Wi-Fi RSSI positioning model, resulting in 2 m accuracy when the cumulative distribution function (CDF) is 0.8.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

Accurate Long-Term Evolution/Wi-Fi hybrid positioning technology for emergency rescue

  • Myungin Ji;Ju-il Jeon;Kyeong-Soo Han;Youngsu Cho
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.939-951
    • /
    • 2023
  • It is critical to estimate the location using only Long-Term Evolution (LTE) and Wi-Fi information gathered by the user's smartphone and deployable for emergency rescue, regardless of whether the Global Positioning System is received. In this research, we used a vehicle to gather LTE and Wi-Fi wireless signals over a large area for an extended period of time. After that, we used the learning technique to create a positioning database that included both collection and noncollection points. We presented a two-step positioning algorithm that utilizes coarse localization to discover a rough location in a wide area rapidly and fine localization to estimate a particular location based on the coarse position. We confirmed our technology utilizing different sorts of devices in four regional types that are generally encountered: dense urban, urban, suburban, and rural. Results presented that our algorithm can satisfactorily achieve the target accuracy necessary in emergency rescue circumstances.

도심환경에서의 밀결합 측위 기법 (Closely Coupled Positioning Technique in Urban Environments)

  • 황유민;오주영;김윤현;김진영;김하성;지규인
    • 한국위성정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.104-109
    • /
    • 2012
  • 최근 위치해를 얻기위해서 위성을 기반으로한 GPS(Global Positioning System) 가 많이 이용되고 있다. 그러나 도심지역 등에서는 다중경로에 의한 영향으로 신뢰성 낮은 위치 정보를 수신할 수도 있다. 이러한 문제점을 해결하기 위해 GPS신호와 QZSS(Quasi-Zenith Satellite System) 신호를 통합하는 밀결합 측위기법을 제안하고자 한다. 또한 AP(access point)정보를 이용함으로써 Wi-Fi 신호와 GNSS신호를 통합하는 밀결합 알고리즘을 제안하고자 한다. 본 연구과제는 도심지역에서 항법성능을 향상시키기 위해서 GPS/QZSS/Wi-Fi 통합항법 알고리즘을 개발하고, 이를 차량주행실험을 통하여 위치의 가용성과 정확도를 기준으로 성능분석을 수행하였다.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.