본 논문에서는 이동통신망을 이용한 WiFi 위치 측위기술 및 서비스에 대해 소개해 보고자 한다. 또한, 본 논문에서는 이동통신망을 이용한 WPS(WiFi Positioning System)의 기본적인 기술요소 및 품질요소 등을 살펴보고자 한다. 위 이동통신 기반의 위치서비스를 제공할 때 단말의 위치 결정 기술을 통하여 사용자 또는 가입자에게 편리성을 제공해 줄 뿐만 아니라 위치기반서비스 산업활동에 대하여 많은 기여를 할 것으로 본다.
Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.
Wi-Fi fingerprinting 시스템은 실내에서 사용되는 위치 측위 방법이며 AP(Access Point)에서 발생하는 RSS(Received Signal Strength)에 의존한다. AP로부터의 RSS는 벽, 장애물 그리고 사람에 의한 간섭과 다중경로 페이딩 효과에 의하여 변할 수 있기 때문에 Wi-Fi fingerprinting 시스템은 낮은 측위 정확도를 갖는다. 또한, Wi-Fi 신호는 벽을 통과하기 때문에 기존의 시스템은 사용자가 현재 위치해 있는 층을 구분하기 어렵다. 이러한 단점을 극복하기 위하여 본 논문은 정확한 실내 측위를 위한 LED fingerprinting 시스템을 제안한다. 제안된 시스템은 LED로부터 발생하는 LED-ID와 LED의 광 파워를 사용한다. 본 시스템의 Training 단계에서는 각 장소에 해당하는 Fingerprinting을 데이터베이스에 기록한다. Serving 단계에서는 K-NN(K-Nearest Neighbor) 알고리즘을 적용하여 기존의 데이터와 새롭게 수신되는 사용자의 데이터를 비교한다. 컴퓨터 시뮬레이션을 통해 CDF(Cumulative Distribution Function) 형태로 본 시스템의 성능을 나타내었고, 시뮬레이션 결과로부터 제안된 시스템은 평균 측위 정확도보다 8.6% 높은 정확도를 얻을 수 있다.
본 논문에서는 GPS(Global Positioning System)를 사용할 수 있는 실외와 GPS(Global Positioning System)를 사용할 수 없는 실내에서 Wi-Fi(Wireless Fidelity)를 이용한 안드로이드 기반의 위치 정보 시스템을 설계 및 구현하였다. 보행자의 위치를 실내에서 추정하기 위해서는, 보행자의 위치에 상관없이 절대위치를 구하는 것이 필요하고, 보행자의 움직임에 따라서 상대위치를 연속적으로 추정하는 것이 필요하다. 보행자의 초기위치를 추정하기 위해서 Wi-Fi fingerprinting을 사용하였다. 기존의 Wi-Fi fingerprinting에서 가장 위치 오차가 작은 WKNN(Weighted K Nearest Neighbor) 알고리즘의 단점을 보완한 EWKNN(Enhanced Weighted K Nearest Neighbor) 알고리즘을 사용해 위치의 정확도를 높였다. 그리고 보행자의 상대위치를 추정하기 위해서는, 스마트폰에 탑재되어 있는 IMU(Inertial Measurement Unit)를 사용하였기 때문에 추가적인 장비가 필요하지 않았다.
본 논문에서는 최근 들어 활발하게 연구되고 있는 WiFi fingerprint를 이용한 실내 위치 인식 기술에서, Weighted K-Nearest Neighbour 방식을 적용할 때 사용되는 가중치에 대한 분석 결과를 보이고 있다. W-KNN 방식은 그 간결함에도 불구하고 WiFi fingerprint를 이용하는 다른 복잡한 방식들과 유사한 성능을 보이고 있어, 실제적으로 실내 위치 인식 기술로 많이 사용되고 있다. 또한 사전 데이터 처리 방식이나 이 방식에서 사용되는 가중치에 따라 성능 차이를 보이고 있으므로, 이에 대한 연구 및 분석은 중요한 의미가 있다. 여기서는 실제로 측정된 WiFi fingerprint 데이터를 기반으로, 데이터 사전처리 경우와 가중치에 측정값의 분산 및 거리를 적용하는 경우, 지점 위치 평균 개수 K를 사용하는 경우 등에 대해 위치 추정 오차를 분석하고 성능을 비교한다. 이 연구 결과는 실제로 실내 위치 인식 시스템을 구축할 때에 실용적으로 활용될 수 있다.
Wi-Fi Received Signal Strength Indicator (RSSI) is considered one of the most important sensor data types for indoor localization. However, collecting a RSSI fingerprint, which consists of pairs of a RSSI measurement set and a corresponding location, is costly and time-consuming. In this paper, we propose a Wi-Fi RSSI learning technique without true location data to overcome the limitations of static database construction. Instead of the true reference positions, inertial measurement unit (IMU) data are used to generate pseudo locations, which enable a trainer to move during data collection. This improves the efficiency of data collection dramatically. From an experiment it is seen that the proposed algorithm successfully learns the unsupervised Wi-Fi RSSI positioning model, resulting in 2 m accuracy when the cumulative distribution function (CDF) is 0.8.
In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.
It is critical to estimate the location using only Long-Term Evolution (LTE) and Wi-Fi information gathered by the user's smartphone and deployable for emergency rescue, regardless of whether the Global Positioning System is received. In this research, we used a vehicle to gather LTE and Wi-Fi wireless signals over a large area for an extended period of time. After that, we used the learning technique to create a positioning database that included both collection and noncollection points. We presented a two-step positioning algorithm that utilizes coarse localization to discover a rough location in a wide area rapidly and fine localization to estimate a particular location based on the coarse position. We confirmed our technology utilizing different sorts of devices in four regional types that are generally encountered: dense urban, urban, suburban, and rural. Results presented that our algorithm can satisfactorily achieve the target accuracy necessary in emergency rescue circumstances.
최근 위치해를 얻기위해서 위성을 기반으로한 GPS(Global Positioning System) 가 많이 이용되고 있다. 그러나 도심지역 등에서는 다중경로에 의한 영향으로 신뢰성 낮은 위치 정보를 수신할 수도 있다. 이러한 문제점을 해결하기 위해 GPS신호와 QZSS(Quasi-Zenith Satellite System) 신호를 통합하는 밀결합 측위기법을 제안하고자 한다. 또한 AP(access point)정보를 이용함으로써 Wi-Fi 신호와 GNSS신호를 통합하는 밀결합 알고리즘을 제안하고자 한다. 본 연구과제는 도심지역에서 항법성능을 향상시키기 위해서 GPS/QZSS/Wi-Fi 통합항법 알고리즘을 개발하고, 이를 차량주행실험을 통하여 위치의 가용성과 정확도를 기준으로 성능분석을 수행하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권5호
/
pp.1339-1355
/
2023
Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.