• Title/Summary/Keyword: Whole body scan

Search Result 180, Processing Time 0.02 seconds

Role of PET Scan in Gastric Cancer as a Diagnostic Tool (위암에서 PET의 임상적 역할)

  • Cheon, Gi-Jeong;Kim, Byung-Il;Lim, Sang-Moo
    • Journal of Gastric Cancer
    • /
    • v.2 no.4
    • /
    • pp.184-190
    • /
    • 2002
  • Clinical application of positron emission tomography (PET) is rapidly increasing for the detection and staging of cancer at whole-body studies performed with the glucose analogue tracer 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG). Although FDG PET cannot match the anatomic resolution of conventional imaging techniques in gastrointestinal and abdominal organs, it is particularly useful for identification and characterization of whole body at the same time. FDG PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can aid in the characterization of indeterminate soft-tissue masses. Most gastrointestinal cancer need to surgical management. FDG PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. The gastrointestinal cancers, such as gastroesophageal cancer, colorectal cancer, liver cancer and pancreatic cancer, are common malignancies in Korea. PET is one of the most promising and useful methodology for the management of gastric cancer as well as other gastrointestinal cancers.

  • PDF

Improvement of internal exposure assessments of the inhalation of fuel-type hot particles during long-term outages

  • Moonhyung Cho;Hyeongjin Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3925-3932
    • /
    • 2024
  • During outages at nuclear power plants, much more care for radiation workers against internal exposure should be ensured given that more hot particles exist relative to the amount during normal operation. If fuel-type hot particles (FTHP) are inhaled, they can cause more severe health risks compared to activation-type hot particles (ATHP), which contain 60Co, due to the alpha-emitting nuclides within FTHPs. The activities of difficult-to-measure nuclides within FTHPs inhaled by workers are inferred by the age-dating technique using a141Ce/144Ce ratio as measured by whole-body counters. However, this method may be limited to outages that last for only a few months due to the short half-life (32.5 days) of 141Ce. We studied the feasibility of utilizing 241Am, a nuclide with a long half-life of 432.6 years, as an alternative to 141Ce. Additionally, we improved the performance of a stand-type whole-body counter for low-energy gamma spectroscopy to meet the criterion (RMSE ≤0.25) specified in ANSI/HPS N13.30-2011 by employing an artificial neural network (ANN). This study can contribute to more rapid and accurate internal dose assessments for workers who have inhaled FTHPs during long-term outages at nuclear power plants.

Assessment of a Deep Learning Algorithm for the Detection of Rib Fractures on Whole-Body Trauma Computed Tomography

  • Thomas Weikert;Luca Andre Noordtzij;Jens Bremerich;Bram Stieltjes;Victor Parmar;Joshy Cyriac;Gregor Sommer;Alexander Walter Sauter
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 2020
  • Objective: To assess the diagnostic performance of a deep learning-based algorithm for automated detection of acute and chronic rib fractures on whole-body trauma CT. Materials and Methods: We retrospectively identified all whole-body trauma CT scans referred from the emergency department of our hospital from January to December 2018 (n = 511). Scans were categorized as positive (n = 159) or negative (n = 352) for rib fractures according to the clinically approved written CT reports, which served as the index test. The bone kernel series (1.5-mm slice thickness) served as an input for a detection prototype algorithm trained to detect both acute and chronic rib fractures based on a deep convolutional neural network. It had previously been trained on an independent sample from eight other institutions (n = 11455). Results: All CTs except one were successfully processed (510/511). The algorithm achieved a sensitivity of 87.4% and specificity of 91.5% on a per-examination level [per CT scan: rib fracture(s): yes/no]. There were 0.16 false-positives per examination (= 81/510). On a per-finding level, there were 587 true-positive findings (sensitivity: 65.7%) and 307 false-negatives. Furthermore, 97 true rib fractures were detected that were not mentioned in the written CT reports. A major factor associated with correct detection was displacement. Conclusion: We found good performance of a deep learning-based prototype algorithm detecting rib fractures on trauma CT on a per-examination level at a low rate of false-positives per case. A potential area for clinical application is its use as a screening tool to avoid false-negative radiology reports.

Development of High Resolution Micro-CT System for In Vivo Small Animal Imaging (소형 동물의 생체 촬영을 위한 고해상도 Micro-CT 시스템의 개발)

  • Park, Jeong-Jin;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2007
  • Recently, small-animal imaging technology has been rapidly developed for longitudinal screening of laboratory animals such as mice and rats. One of newly developed imaging modalities for small animals is an x-ray micro-CT (computed tomography). We have developed two types of x-ray micro-CT systems for small animal imaging. Both systems use flat-panel x-ray detectors and micro-focus x-ray sources to obtain high spatial resolution of $10{\mu}m$. In spite of the relatively large field-of-view (FOV) of flat-panel detectors, the spatial resolution in the whole-body imaging of rats should be sacrificed down to the order of $100{\mu}m$ due to the limited number of x-ray detector pixels. Though the spatial resolution of cone-beam CTs can be improved by moving an object toward an x-ray source, the FOV should be reduced and the object size is also limited. To overcome the limitation of the object size and resolution, we introduce zoom-in micro-tomography for high-resolution imaging of a local region-of-interest (ROI) inside a large object. For zoom-in imaging, we use two kinds of projection data in combination, one from a full FOV scan of the whole object and the other from a limited FOV scan of the ROI. Both of our micro-CT systems have zoom-in micro-tomography capability. One of both is a micro-CT system with a fixed gantry mounted with an x-ray source and a detector. An imaged object is laid on a rotating table between a source and a detector. The other micro-CT system has a rotating gantry with a fixed object table, which makes whole scans without rotating an object. In this paper, we report the results of in vivo small animal study using the developed micro-CTs.

Development of Simple Articulated Human Models using Superquadrics for Dynamic Analysis

  • Lee, Hyun-Min;Kim, Jay-Jung;Chae, Je-Wook
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.715-725
    • /
    • 2011
  • Objective: This study is aimed at developing Articulated Human Models(AHM) using superquadrics to improve the geometric accuracy of the body shape. Background: The previous work presents the AHM with geometrical simplification such as ellipsoids to improve analysis efficiency. However, because of the simplicity, their physical properties such as a center of mass and moment of inertia are computed with errors compared to their actual values. Method: This paper introduces a three steps method to present the AHM with superquadrics. First, a 3D whole body scan data are divided into 17 body segments according to body joints. Second, superquadric fitting is employed to minimize the Euclidean distance between body segments and superquadrics. Finally, Fee-Form Deformation is used to improve accuracy over superquadric fitting. Results: Our computational experiment shows that the superquadric models give better accuracy of dynamic analysis than that of ellipsoid ones. Conclusion: We generate the AHM composed of 17 superquadrics and 16 joints using superquadric fitting. Application: The AHM using superquadrics can be used as the base model for dynamics and ergonomics applications with better accuracy because it presents the human motion effectively.

Evaluation of Usefulness of Radio-iodine SPECT/CT in Differentiated Thyroid Cancer (분화성갑상선암에서 방사성요오드 SPECT/CT의 유용성 평가)

  • Lee, Jeong-Won;Lee, Ho-Young;Oh, So-Won;Kim, Seok-Ki;Jeong, Ki-Wook;Kim, Seon-Wook;Kang, Keon-Wook
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.350-358
    • /
    • 2007
  • Purpose: Localizing and differentiating a metastatic lesion of differentiated thyroid cancer (DTC) by using radio iodine whole body scan could be difficult because a whole body scan (WBS) lacks anatomic information. This study was performed to evaluate the usefulness of radio-iodine SPECT/CT for differentiating equivocal lesions. Materials & Methods: Among 253 patients with DTC who had undergone radio-iodine scan between February and July 2006, 26 patients were enrolled (M:F = 8:18, Age $50.7{\pm}12.5$ years) in this study. The patients had abnormal uptakes in the WBSs that necessitated precise anatomical localization for differentiating between a metastatic lesion and a false-positive lesion. SPECT/CT was performed for the region with abnormal uptake in the WBS. WBS and SPECT/CT were evaluated visually. Metastases were diagnosed based on the results of the radio-iodine scan along with the results of other radiological examinations and serological tests. Results: Based on the WBS images, 13 were suspected with cervical lymph node (LN) metastases in 16 patients with abnormal neck uptake, and in the 11 patients with abnormal extra-cervical uptakes, extra-cervical metastases were doubtful in all. After SPECT/CT was performed, the diagnostic results were altered for 16 patients (62%). SPECT/CT revealed that only 5 patients had cervical LN metastases, while 3 patients had extra-cervical (mediastinal) LN metastases. Overall, there was a 58% (15/26) change in diagnoses and plans for treatment due to SPECT/CT. Among 8 patients suspected with metastases on SPECT/CT, 6 patients underwent another radio-iodine therapy. In 96% (24/25) of the patients, the results of SPECT/CT corresponded with those of further radiological examinations and with other clinical information. Conclusion: Radio-iodine SPECT/CT images permitted the differentiation of abnormal radio-iodine uptake and improved anatomical interpretation in DTC.

The Clinical Usefulness Measurement of the Whole Body Percent Fat Calculated by the Part Bone Mineral Density Measurement (부분골밀도 측정을 통해 산출되는 체지방률의 임상적 유용성에 대한 평가)

  • Kang, Young-Eun;Kim, Eun-Hye;Kim, Ho-Sung;Choi, Jong-Sook;Choi, Woo-Jun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.3-9
    • /
    • 2011
  • Purpose: Generally dual energy X-ray absorptiometry has been used for the purpose of evaluation of osteoporosis and treatment. Recently the interest of obesity came to be high and body percent fat test is increasing. Existing measure of body fat have to scan the whole body can be evaluated, but only lumbar spine and hip measurements was assumed to be whole body fat as well as improving the software. It tries to check whether the part measured value not being whole body measurement has the validity or not compared with the value calculated with the method that it is different, it forgives through a correlation with a (BIA) and (BMI). Materials and Methods: In 2010, the body percent fat was measured among the examinee coming to the Asan Medical Center public health care center from March till August against 90 females more than 40 years old through (DXA) and BIA. BMI utilized the value which wrote an hight and weight measured through the body measuring instrument in the examinee information and is automatically calculated. In addition, it classified as the low weight ($13-18.5kg/m^2$), normal ($18.5-25kg/m^2$), and corpulence ($25-30kg/m^2$) based on BMI and so that it could check whether there was the difference according to the weight or not BMI and BIA and correlation between DXA were analyzed in each group. The statistical program for the analysis used SPSS 12.0. Results: The comparison of DXA at 3 which it divides into the low weight and normal and corpulence groups and BIA did not show the difference noted statistically in all groups and the between group comparison was exposed to do not have a meaning. The body percent fat measured by the correlation analysis result DXA at the state that it doesn't divide into the group showed the high correlation (r=0.908, p0.01) noted statistically compared with BMI and showed the high correlation noted statistically in a comparison with BIA (r=0.927, p0.01). Conclusion: It confirmed that the whole body percent fat presumed from the part bone density measurement showed the excel correlation compared with BIA and BMI and information is high. There is still no clear standard about the presumed whole body percent fat and it is difficult to evaluate the fat evaluation by the bone mineral density measurement. However, it is determined that the information offering which is more objective through the comparative study with the body percent fat which is very efficient and in that it can obtain till the information about a fat as well as diagnosis of the osteoporosis through the bone density checkup is measured by the afterward telegraph bone density checkup and is clinically useful is possible.

  • PDF

Colon Cancer Mimicking Physiologic FDG Uptake : with Using of Negative Oral Contrast (네거티브 경구 조영제를 이용한 PET/CT 촬영시 나타난 종양성 섭취와 유사한 생리적 장관 섭취)

  • Jeong, Young-Jin;Kang, Do-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.3
    • /
    • pp.186-187
    • /
    • 2006
  • A 64-year-old female with glioblastoma multiforme (GBM) was assigned to our department for whole body PET/CT scan. She ingested 1 liter of pure water as negative oral contrast just before PET/CT examination. FDG-PET/CT images showed a very intense hypermetabolic, focal lesion in the abdominal cavity around descending colon. The SUVmax of the lesion was 17.2. But there was no abnormal lesion corresponded to the area of PET scan in the combined contrast enhanced CT scan. We suggested considering a malignant lesion due to very intense glycolytic activity. Conventional abdominal CT scan & colonoscopy were accomplished within one week after PET/CT evaluation. There was no abnormality in both examinations. We executed follow-up PET/CT evaluation after 1 month and couldn't find any abnormality around the corresponding area. So we concluded the hypermetabolism was colonic physiologic uptake. A colonic physiologic uptake is a well known cause of false positive finding. Nuclear physicians should be considered the possibility of malignancy when interpret focal colonic uptake, especially incidental finding. There are a few reports that using of negative oral contrast is able to reduce gastrointestinal physiologic uptakes. But as we can see in this case, although we used negative oral contrast, intense physiologic uptake is detected and maxSUV is able to up to 17.2. So, it is important to keep a fact in mind. Even though there is a colonic physiologic uptake in PET/CT image, it may be able to show very intense hypermetabolism regardless of using negative oral contrast.

A Comparative Study on the CT Effective Dose by the Position of Patient's Arm (전신 PET/CT 검사에서 환자의 팔 위치에 따른 CT 유효선량의 비교 연구)

  • Seong, Ji-Hye;Park, Soon-Ki;Kim, Jung-Sun;Park, Seung-Yong;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • Purpose: In the whole body PET/CT scan, it is natural to lift the patient's arm for its quality improvement. However, when the lesion is located in head and neck, the arms should be located lower. This study was designed to compare the CT effective dose for each arm position applying Automatic Exposure Control (AEC). Materials and Methods: 45 patients who had $^{18}F$-FDG whole body PET/CT scan were studied with Biograph Truepoint 40 (SIEMENS, GERMANY), Biograph Sensation 16 (SIEMENS, GERMANY), Discovery STe 8 (GE healthcare, USA). The CT effective dose of 15 patients for each equipment was measured and comparatively analyzed in both arm-lifted position and lower-arm position. ImPACT v1.0 program was used as the method of measurement for CT effective dose. For the statistics analysis, Paired t-test which paired with SPSS 18.0 statistic program was applied. Results: In the case of arm-lifted, it was measured as $6.33{\pm}0.93mSv$ for Biograph Sensation 16, $8.01{\pm}1.34mSv$ for Biograph Truepoint 40, and $9.69{\pm}2.32mSv$ for Discovery STe 8. When arms are located lower position, it was measure as $6.97{\pm}0.76mSv$, $8.95{\pm}1.85mSv$, $13.07{\pm}2.87mSv$ for each. CT effective dose according to the arm position was 9.2% for Biograph Truepoint 40, 10.5% for Biograph Sensation 16, and 25.9% for Discovery Ste 8. The statistics analysis showed the meaningful difference ($p$<0.05). Conclusion: For the whole body PET/CT case, CT effective dose applying AEC was decreased the radiation exposure of the patients when the arm was lifted for 15.2% of average value. The patient who has no lesion in head and neck would decrease the artifact occurrence in objective part and lower the CT effective dose. Also, for the patient who had lesion in head and neck, the artifact in objective part can be lower by putting the arms down, the fact that CT effective dose increases should be concerned in its whole body PET/CT scan.

  • PDF

Evaluation of Clinical Usefulness of EIS(Electro Interstitial Scan) (EIS(Electro Interstitial Scan) 방법의 임상적 유효성 연구)

  • Kim, Soochan;Bae, Jang-Han;Jun, Min-Ho;Kim, Jaeuk U.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.124-133
    • /
    • 2015
  • Electro interstitial scan shows potential as a non-invasive screening method. It can discriminate some diseases based on electric current response to induce low intensity direct current to limbs or local area of body. DDFAO was invented in France and it is claimed that multi-channel EIS(Electro Interstitial Scan) is useful for various diseases, especially, diagnoses of endocrine system such as diabetics are very effective. In this study, we verified the repeatability and sensitivity of DDFAO by using a RC phantom model and its clinical usefulness using data obtained from normal and diabetes subject groups. As a result, it showed the repeatability and the output change according to change of phantom characteristic, but it was hard to distinguish normal and patient groups non-invasively with just six surface electrodes of DDFAO. The repeatability and the clinical accuracy was not sufficient for screening or diagnostic purposes, as well. In spite of the results with low repeatability and accuracy conducted in this study, we still need further investigations to improve the EIS-based measurement method; EIS is very convenient and simple and it shows potential as a screening tool of the whole body health conditions rather than localized disease diagnosis.