• Title/Summary/Keyword: Whole body Bone Scan

Search Result 68, Processing Time 0.027 seconds

Diffuse Hepatic Uptake of $^{99m}Tc$-DPD on Whole Body Bone Scan: The Influence of MRI Contrast (전신 뼈 검사에서 $^{99m}Tc$-DPD의 미만성 간 섭취: MRI 조영제의 영향)

  • Yun, Jong Jun;Jeong, Ji Uk;Hwang, Ju Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.57-61
    • /
    • 2012
  • Purpose : The whole body bone scan on nuclear medicine is a widely accepted examination and procedure. However, unusual nonosseous uptake can be observed, which reflects a rare interaction between the radiopharmacceutical and the patient. This study aimed to evaluate the influence of MRI(Magnetic Resonance Imaging) contrast and $^{99m}Tc$-DPD(Dicarboxpropane diphosphonate) on whole body bone scan. Materials and Methods : We analyzed the 982 patients who were examined by $^{99m}Tc$-DPD on whole body bone scan in nuclear medicine department of pusan national university hospital from january to december 2010. All these 982 patients had MRI contrast administration prior to whole body bone scan. We analyzed laboratory test. Results : 46 patients(men 39, women 7) showed diffuse hepatic uptake on whole body bone scan. These uptakes were disappeared on the follow-up whole body bone scan. There were no significant difference of CBC test, liver function tests and renal function tests. Conclusion : The study might be an indirect evidence that diffuse hepatic and splenic uptake of 99mTc-DPD on whole body bone scan after intravenous administration of Gadolinium(Gd) MRI contrast. To perform a precise examination, Gd-contrast agent should be removed from the body before performing a whole body bone scan.

  • PDF

The Usefulness of Measurement of Whole Body Count in Assessing Bone Marrow Metastasis in Cancer Patients with Increased Periarticular Bone Uptake on Follow-up Bone Scan: A Comparison with Bone Marrow Scan (암환자의 추적 골스캔에서 관절주위 섭취증가시 전신골섭취계수 측정이 골수전이 평가에 도움이 되는가-골수스캔과의 비교)

  • Jin, Seong-Chan;Choi, Yun-Young;Cho, Suk-Shin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.428-436
    • /
    • 2003
  • Purpose: Increased periarticular uptake could be associated with peripheral bone marrow expansion in cancer patients with axial bone marrow metastasis. We compared bone scan and bone marrow scan to investigate whether the increased whole body count in patients with increased periarticular uptake on bone scan is useful in the diagnosis of axial marrow metastasis, and evaluate the role of additional bone marrow scan in these cases. Materials and methods: Twelve patients with malignant diseases who showed increased periarticular uptake on bone scan were included. Whole body count was measured on bone scan and it is considered to be increased when the count is more than twice of other patients. Bone marrow scan was taken within 3-7 days. Results: Five hematologic malignancy, 3 stomach cancer, 2 breast cancer, 1 prostate cancer and 1 lung cacner were included. All three patients with increased whole body count on bone scan showed axial marrow suppression and peripheral marrow expansion. Eight of 9 patients without increased whole body count showed axial marrow suppression and peripheral marrow expansion. One turned out to be blastic crisis of chronic myelogeneous leukemia, and seven showed normal axial marrow with peripheral marrow expansion in chronic anemia of malignancy. The last one without increased whole body count showed normal bone marrow scan finding. Conclusion: Increased whole body count on bone scan could be a clue to axial bone marrow metastasis in cancer patients with increased periarticular uptake, and bone marrow scan is a valuable method for differential diagnosis in these cases.

Evaluating the Usability of Medical Body Wrap in Whole Body Bone Scan (전신 뼈 검사에서 의료용 신체 고정구의 유용성 평가)

  • Dong-Oh Shim;Woo-Young Jung;Jae-Kwang Ryu;Cheol-Hong Park;Yoon-Jae Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: When performing nuclear medicine examinations, body wraps or plastic supports are used to support and immobilize the patient's upper extremities to prevent patient safety accidents. However, the existing plastic supports compromised patient and staff safety, including finger entrapment and falls. Moreover, the body wrap provided by manufacturers compromised image quality such as upper extremities cutoff during whole body bone scan. Therefore, a new design of body wrap was developed to improve the issue, and this study aims to evaluate the usability of this medical body wrap. Materials and Methods: To evaluate the usability of the newly designed medical body wrap, a quality assessment of whole body bone scan images and a user satisfaction survey were conducted. Adult patients (male:female=129:152, age: 60.3±12.4 years, BMI: 24.0±4.2) aged 16 years or older who underwent a whole body bone scan during two periods: June to July 2022 (before improvement, n=139) and June to July 2023 (after improvement, n=142) were randomly selected for image quality evaluation. Five radiotechnologists visually evaluated the posterior view of the whole body bone image, including the left and right elbow (2 points), arm (2 points), whether the hand is extended (2 points), whether the hand is included (2 points), and the number of visible fingers (10 points), with a total of 18 points, which were converted to 100 points and analyzed for difference before and after improvement using an independent sample t-test. The user satisfaction questionnaire was evaluated using a 5-point Likert scale among 16 radiotechnologists from three general hospitals who experienced the new body wrap. Results: The image quality assessment was 82.0±13.8 before the improvement and 89.3±10.1 after the improvement, an average of 7.3 points higher, with a statistically significant difference (t=5.02, p<0.01). The user satisfaction survey showed an overall satisfaction rating of 4.1±0.8 for ease of use, 3.8±0.7 for scan preparation time, 3.9±0.7 for patient safety, 3.8±1.2 for scan accuracy, and 4.2±0.7 for recommendation (87.5% questionnaire response rate). Conclusion: The developed body wrap showed higher image quality and user satisfaction compared to the old method. Considering these results, it is deemed that the new body wrap may be more useful than existing methods.

The Correction Factor of Sensitivity in Gamma Camera - Based on Whole Body Bone Scan Image - (감마카메라의 Sensitivity 보정 Factor에 관한 연구 - 전신 뼈 영상을 중심으로 -)

  • Jung, Eun-Mi;Jung, Woo-Young;Ryu, Jae-Kwang;Kim, Dong-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.208-213
    • /
    • 2008
  • Purpose: Generally a whole body bone scan has been known as one of the most frequently executed exams in the nuclear medicine fields. Asan medical center, usually use various gamma camera systems - manufactured by PHILIPS (PRECEDENCE, BRIGHTVIEW), SIEMENS (ECAM, ECAM signature, ECAM plus, SYMBIA T2), GE (INFINIA) - to execute whole body scan. But, as we know, each camera's sensitivity is not same so it is hard to consistent diagnosis of patients. So our purpose is when we execute whole body bone scans, we exclude uncontrollable factors and try to correct controllable factors such as inherent sensitivity of gamma camera. In this study, we're going to measure each gamma camera's sensitivity and study about reasonable correction factors of whole body bone scan to follow up patient's condition using different gamma cameras. Materials and Methods: We used the $^{99m}Tc$ flood phantom, it recommend by IAEA recommendation based on general counts rate of a whole body scan and measured counts rates by the use of various gamma cameras - PRECEDENCE, BRIGHTVIEW, ECAM, ECAM signature, ECAM plus, IFINIA - in Asan medical center nuclear medicine department. For measuring sensitivity, all gamma camera equipped LEHR collimator (Low Energy High Resolution multi parallel Collimator) and the $^{99m}Tc$ gamma spectrum was adjusted around 15% window level, the photo peak was set to 140-kev and acquirded for 60 sec and 120 sec in all gamma cameras. In order to verify whether can apply calculated correction factors to whole body bone scan or not, we actually conducted the whole body bone scan to 27 patients and we compared it analyzed that results. Results: After experimenting using $^{99m}Tc$ flood phantom, sensitivity of ECAM plus was highest and other sensitivity order of all gamma camera is ECAM signature, SYMBIA T2, ECAM, BRIGHTVIEW, IFINIA, PRECEDENCE. And yield sensitivity correction factor show each gamma camera's relative sensitivity ratio by yielded based on ECAM's sensitivity. (ECAM plus 1.07, ECAM signature 1.05, SYMBIA T2 1.03, ECAM 1.00, BRIGHTVIEW 0.90, INFINIA 0.83, PRECEDENCE 0.72) When analyzing the correction factor yielded by $^{99m}Tc$ experiment and another correction factor yielded by whole body bone scan, it shows statistically insignificant value (p<0.05) in whole body bone scan diagnosis. Conclusion: In diagnosing the bone metastasis of patients undergoing cancer, whole body bone scan has been conducted as follow up tests due to its good points (high sensitivity, non invasive, easily conducted). But as a follow up study, it's hard to perform whole body bone scan continuously using same gamma camera. If we use same gamma camera to patients, we have to consider effectiveness of equipment's change by time elapsed. So we expect that applying sensitivity correction factor to patients who tested whole body bone scan regularly will add consistence in diagnosis of patients.

  • PDF

Classification of Whole Body Bone Scan Image with Bone Metastasis using CNN-based Transfer Learning (CNN 기반 전이학습을 이용한 뼈 전이가 존재하는 뼈 스캔 영상 분류)

  • Yim, Ji Yeong;Do, Thanh Cong;Kim, Soo Hyung;Lee, Guee Sang;Lee, Min Hee;Min, Jung Joon;Bom, Hee Seung;Kim, Hyeon Sik;Kang, Sae Ryung;Yang, Hyung Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1224-1232
    • /
    • 2022
  • Whole body bone scan is the most frequently performed nuclear medicine imaging to evaluate bone metastasis in cancer patients. We evaluated the performance of a VGG16-based transfer learning classifier for bone scan images in which metastatic bone lesion was present. A total of 1,000 bone scans in 1,000 cancer patients (500 patients with bone metastasis, 500 patients without bone metastasis) were evaluated. Bone scans were labeled with abnormal/normal for bone metastasis using medical reports and image review. Subsequently, gradient-weighted class activation maps (Grad-CAMs) were generated for explainable AI. The proposed model showed AUROC 0.96 and F1-Score 0.90, indicating that it outperforms to VGG16, ResNet50, Xception, DenseNet121 and InceptionV3. Grad-CAM visualized that the proposed model focuses on hot uptakes, which are indicating active bone lesions, for classification of whole body bone scan images with bone metastases.

A Study on the Determination of Scan Speed in Whole Body Bone Scan Applying Oncoflash (Oncoflash를 적용한 전신 뼈 영상 검사의 스캔 속도 결정에 관한 연구)

  • Yang, Gwang-Gil;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.56-60
    • /
    • 2009
  • Purpose: The various studies and efforts to develop program are in progress in the field of nuclear medicine for the purpose of reducing scan time. The Oncoflash is one of the programs used in whole body bone scan which allows to maintain the image quality while to reduce scan time. When Those applications are used in clinical setting, both the image quality and reduction of scan time should be considered, therefore, the purpose of this study was to determine the criteria for proper scan speed. Materials and Methods: The subjects of this study were the patients who underwent whole body bone scan at the departments of nuclear medicine in the Asan Medical Center located in Seoul from 1st to 10th, July, 2008. The whole body bone images obtained in the scan speed of 30cm/min were classified by the total counts into under 800 K, and over 800 K, 900 K, 1,000 K, 1,500 K, and 2,000 K. The image quality were assessed qualitatively and the percentages of those of 1,000K and under of total counts were calculated. The FWHM before and after applying the Oncoflash were analyzed using images obtained in $^{99m}Tc$ Flood and 4-Quadrant bar phantom in order to compare the resolution according to the amount of total counts by the application of the Oncoflash. Considering the counts of the whole body bone scan, the dosed 2~5 mCi were used. 152 patients underwent the measurement in which the counts of Patient Postioning Monitor (PPM) were measured with including head and the parts of chest which the starting point of whole body bone scan from 7th to 26th, August, 2008. The correlations with total counts obtained in the scan speed of 30cm/min among them were analyzed (The exclusion criteria were after over six hours of applying isotopes or low amount of doses). Results: The percentage of the whole body bone image which has the geometric average of total counts of under 1,000K among them obtained in the scan speed of 30cm/min were 17.6%(n=58) of 329 patients. The qualitative analysis of the image groups according to the whole body counts showed that the images of under 1,000K were assessed to have coarse particles and increased noises. The analysis on the FWHM of the images before and after applying the Oncoflash showed that, in the case of PPM counts of under 3.6 K, FWHM values after applying the Oncoflash were higher than that before applying the Oncoflash, whereas, in the case of that of over 3.6 K, the FWHM after applying the Oncoflash were not higher than that before applying the Oncoflash. The average of total counts at 2.5~3.0 K, 3.1~3.5 K, 3.6~4.0 k, 4.1~4.5 K, 4.6~5.0 K, 5.1~6.0 K, 6.1~7.0 K, and 7.1 K over (in PPM) were $965{\pm}173\;K$, $1084{\pm}154\;K$, $1242{\pm}186\;K$, $1359{\pm}170\;K$, $1405{\pm}184\;K$, $1640{\pm}376\;K$, $1,771{\pm}324\;K$, and $1,972{\pm}385\;K$, respectively and the correlations between the counts in PPM and the total counts of image obtained in the scan speed of 30 cm/min demonstrated strong correlation (r=.775, p<.01). Conclusions: In the case of PPM coefficient over 3.6 K, the image quality obtained in the scan speed of 30cm/min and after applying the Oncoflash was similar to that obtained in the scan speed of 15 cm/min. In the case of total counts over 1,000 K, it is expected to reduce scan time without any damage on the image quality. In the case of total counts under 1,000 K, however, the image quality were decreased even though the Oncoflash is applied, so it is recommended to perform the re-image in the scan speed of 15 cm/min.

  • PDF

FDG-PET and MDP scan findings in chronic osteomyelitis of the left femur (좌측 대퇴골에 발생한 만성골수염의 PET와 MDP scan 영상)

  • Park, Chan-H.;Lee, Myoung-Hoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.143-145
    • /
    • 2002
  • A 49-year-old male patient with a carcinoma of the right pyriform sinus had a whole-body bone scan and gamma camera based F-18 FDG-PET for staging. Tc-99m MDP bone scan depicted diffuse increased uptake in the left femur due to chronic osteomyelitis but no skeletal metastasis. F-18-FDG-PET revealed increased focal bone uptake and uptake in the draining sinus due to chronic osteomyelitis in addition to visualization of the right pyriform sinus carcinoma and right neck nodal uptake. Fluorine-18 fluorodeoxyglucose-positron emission tomography is significantly more accurate than the bone scan in pinpointing chronic osteomyelitis focus and draining soft tissue infection.

Usefulness of Breast Lymphoscintigraphy after Whole Body Bone Scan (유방암 환자에서 전신 뼈 검사 후 감시림프절 위치 파악 검사의 유용성)

  • Jang, Dong-Gun;Bahn, Young-Kag;Chung, Seok;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.133-137
    • /
    • 2010
  • Purpose: Breast cancer is known to be more vulnerable to bone metastasis and lymph node metastasis than other types of cancer, and nuclear examinations whole body bone scan and lymphoscintigraphy are performed commonly before and after breast cancer operation. In case whole body bone scan is performed on the day before lymphoscintigraphy, the radiopharmaceutical taken into and remaining in the bones provides anatomical information for tracking and locating sentinel lymph nodes. Thus, this study purposed to examine how much bone density affects in locating sentinel lymph nodes. Materials and Methods: The subjects of this study were 22 patients (average age $52{\pm}7.2$) who had whole body bone scan and lymphoscintigraphy over two days in our hospital during the period from January to December, 2009. In the blind test, 22 patients (average age $57{\pm}6.5$) who had lymphoscintigraphy using $^{57}Co$ flood phantom were used as a control group. In quantitative analysis, the relative ratio of the background to sentinel lymph nodes was measured by drawing ROIs on sentinel lymph nodes and the background, and in gross examination, each of a nuclear physician and a radiological technologist with five years' or longer field experience examined images through blind test in a five-point scale. Results: In the results of quantitative analysis, the relative ratio of the background to sentinel lymph nodes was 14.2:1 maximum and 8.5:1 ($SD{\pm}3.48$) on the average on the front, and 14.7:1 maximum and 8.5:1 ($SD{\pm}3.42$) on the average on the side. In the results of gross examination, when $^{57}Co$ flood phantom images were compared with images containing bones, the score was relative high as 3.86 ($SD{\pm}0.35$) point for $^{57}Co$ flood phantom images and 4.09 ($SD{\pm}0.42$) for bone images. Conclusion: When whole body bone scan was performed on the day before lymphoscintigraphy, the ratio of the background to sentinel lymph nodes was over 10:1, so there was no problem in locating lymph nodes. In addition, we expect to reduce examination procedures and improve the quality of images by indicating the location of sentinel lymph nodes using bone images as body contour without the use of a source.

  • PDF

A Study of Bone Uptake According to Renal Function in the Whole Body Bone Scan (전신 뼈 검사에서 신장 기능에 따른 뼈 섭취율에 대한 고찰)

  • Cho, Yong-In;Jang, Dong-Gun;Park, Cheol-Woo
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • Whole body bone scan has been used to confirm bone metastasis and follow-up study with radio isotope. However, if the factors related to $^{99m}Tc$ uptake and waiting time for study are inappropriate, it would be image of low quality. The purpose of present study was to investigate correlation between the evaluation index of renal function and uptake of radiopharmaceuticals. The population for this retrospective study consisted of 387 patients who underwent whole body bone scan between June 2012 and December 2012. As a result of quantitative and qualitative analysis, we were able to confirm that GFR of less than normal range and creatinine levels in blood of more than average are more likely to be under the mean uptake rate. As a result of analysis on the indicator affecting soft-tissue and bone uptake, the correlation of all elements was somewhat low. Also there are no statistically significances due to the other parameters we did not deal with. Therefore, further research on additional factors is needed for exact study and improvement of the image quality.

Early Detection of Bone Metastasis in Malignancy With whole Body Bone Scan (전신골격주사(全身骨格走査)를 이용(利用)한 골전이(骨轉移)의 조기발견(早期發見))

  • Kim, Myung-Duk;Jung, Soon-Il;Choi, Kang-Won;Kim, Byung-Kuk;Koh, Chung-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.13 no.1_2
    • /
    • pp.45-53
    • /
    • 1979
  • Bone scans with $^{99m}Tc$-MDP (methylene diphosphonate) was analysed in 112 patients with various type of biopsy proven malignant tumor who visited Seoul National University Hospital from March 1979 to August 1979. The results were as follows; 1. Of the 112 cases, bone scans were positive in 61 cases (54.1%), while only 27 cases (24.1%) were positive in roentgenogram. 2. Of the 61 cases with positive bone scan, bone metastases were found in 25 cases by roentgenogram. Of the 51 cases with negative bone scan, bone metastasis was found in only 1 case by roentgenogram. 3. In comparison of bone scan and roentgenogram by number of regions, 137 regions were positive in bone scan or roentgenogram. Of these, 46 regions (33.5%) were both bone scan and roentgenogram positive, 89 regions (65.0%) were bone scan positive roentgenogram negative, and 2 regions were bone scan negative roentgenogram positive. 4. Bone scan and roentgenographic findings had significant correlation with the presence of bone pain but no significant correlation with the elevated level of serum alkaline phosphatase, acid phosphatase, Ca, and P. From above result, we found that bone scan was more sensitive than roentgenogram in early detection of bone metastasis in malignant tumors.

  • PDF