• 제목/요약/키워드: Whole Genome Association

검색결과 83건 처리시간 0.022초

Investigations on Genetic Architecture of Hairy Loci in Dairy Cattle by Using Single and Whole Genome Regression Approaches

  • Karacaoren, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권7호
    • /
    • pp.938-943
    • /
    • 2016
  • Development of body hair is an important physiological and cellular process that leads to better adaption in tropical environments for dairy cattle. Various studies suggested a major gene and, more recently, associated genes for hairy locus in dairy cattle. Main aim of this study was to i) employ a variant of the discordant sib pair model, in which half sibs from the same sires are randomly sampled using their affection statues, ii) use various single marker regression approaches, and iii) use whole genome regression approaches to dissect genetic architecture of the hairy gene in the cattle. Whole and single genome regression approaches detected strong genomic signals from Chromosome 23. Although there is a major gene effect on hairy phenotype sourced from chromosome 23: whole genome regression approach also suggested polygenic component related with other parts of the genome. Such a result could not be obtained by any of the single marker approaches.

Draft genome of Semisulcospira libertina, a species of freshwater snail

  • Gim, Jeong-An;Baek, Kyung-Wan;Hah, Young-Sool;Choo, Ho Jin;Kim, Ji-Seok;Yoo, Jun-Il
    • Genomics & Informatics
    • /
    • 제19권3호
    • /
    • pp.32.1-32.10
    • /
    • 2021
  • Semisulcospira libertina, a species of freshwater snail, is widespread in East Asia. It is important as a food source. Additionally, it is a vector of clonorchiasis, paragonimiasis, metagonimiasis, and other parasites. Although S. libertina has ecological, commercial, and clinical importance, its whole-genome has not been reported yet. Here, we revealed the genome of S. libertina through de novo assembly. We assembled the whole-genome of S. libertina and determined its transcriptome for the first time using Illumina NovaSeq 6000 platform. According to the k-mer analysis, the genome size of S. libertina was estimated to be 3.04 Gb. Using RepeatMasker, a total of 53.68% of repeats were identified in the genome assembly. Genome data of S. libertina reported in this study will be useful for identification and conservation of S. libertina in East Asia.

Multi-omics techniques for the genetic and epigenetic analysis of rare diseases

  • Yeonsong Choi;David Whee-Young Choi;Semin Lee
    • Journal of Genetic Medicine
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2023
  • Until now, rare disease studies have mainly been carried out by detecting simple variants such as single nucleotide substitutions and short insertions and deletions in protein-coding regions of disease-associated gene panels using diagnostic next-generation sequencing in association with patient phenotypes. However, several recent studies reported that the detection rate hardly exceeds 50% even when whole-exome sequencing is applied. Therefore, the necessity of introducing whole-genome sequencing is emerging to discover more diverse genomic variants and examine their association with rare diseases. When no diagnosis is provided by whole-genome sequencing, additional omics techniques such as RNA-seq also can be considered to further interrogate causal variants. This paper will introduce a description of these multi-omics techniques and their applications in rare disease studies.

No excessive mutations in transcription activator-like effector nuclease-mediated α-1,3-galactosyltransferase knockout Yucatan miniature pigs

  • Choi, Kimyung;Shim, Joohyun;Ko, Nayoung;Park, Joonghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.360-372
    • /
    • 2020
  • Objective: Specific genomic sites can be recognized and permanently modified by genome editing. The discovery of endonucleases has advanced genome editing in pigs, attenuating xenograft rejection and cross-species disease transmission. However, off-target mutagenesis caused by these nucleases is a major barrier to putative clinical applications. Furthermore, off-target mutagenesis by genome editing has not yet been addressed in pigs. Methods: Here, we generated genetically inheritable α-1,3-galactosyltransferase (GGTA1) knockout Yucatan miniature pigs by combining transcription activator-like effector nuclease (TALEN) and nuclear transfer. For precise estimation of genomic mutations induced by TALEN in GGTA1 knockout pigs, we obtained the whole-genome sequence of the donor cells for use as an internal control genome. Results: In-depth whole-genome sequencing analysis demonstrated that TALEN-mediated GGTA1 knockout pigs had a comparable mutation rate to homologous recombination-treated pigs and wild-type strain controls. RNA sequencing analysis associated with genomic mutations revealed that TALEN-induced off-target mutations had no discernable effect on RNA transcript abundance. Conclusion: Therefore, TALEN appears to be a precise and safe tool for generating genomeedited pigs, and the TALEN-mediated GGTA1 knockout Yucatan miniature pigs produced in this study can serve as a safe and effective organ and tissue resource for clinical applications.

A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo

  • Li, Yi;Gao, Yuxuan;Kim, You-Sam;Iqbal, Asif;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.8-19
    • /
    • 2017
  • Objective: A whole genome association study was conducted to identify single nucleotide polymorphisms (SNPs) with additive and dominant effects for growth and carcass traits in Korean native cattle, Hanwoo. Methods: The data set comprised 61 sires and their 486 Hanwoo steers that were born between spring of 2005 and fall of 2007. The steers were genotyped with the 35,968 SNPs that were embedded in the Illumina bovine SNP 50K beadchip and six growth and carcass quality traits were measured for the steers. A series of lack-of-fit tests between the models was applied to classify gene expression pattern as additive or dominant. Results: A total of 18 (0), 15 (3), 12 (8), 15 (18), 11 (7), and 21 (1) SNPs were detected at the 5% chromosome (genome) - wise level for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area (LMA) and marbling score, respectively. Among the significant 129 SNPs, 56 SNPs had additive effects, 20 SNPs dominance effects, and 53 SNPs both additive and dominance effects, suggesting that dominance inheritance mode be considered in genetic improvement for growth and carcass quality in Hanwoo. The significant SNPs were located at 33 quantitative trait locus (QTL) regions on 18 Bos Taurus chromosomes (i.e. BTA 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 23, 26, 28, and 29) were detected. There is strong evidence that BTA14 is the key chromosome affecting CWT. Also, BTA20 is the key chromosome for almost all traits measured (WWT, YWT, LMA). Conclusion: The application of various additive and dominance SNP models enabled better characterization of SNP inheritance mode for growth and carcass quality traits in Hanwoo, and many of the detected SNPs or QTL had dominance effects, suggesting that dominance be considered for the whole-genome SNPs data and implementation of successive molecular breeding schemes in Hanwoo.

A whole genome sequence association study of muscle fiber traits in a White Duroc×Erhualian F2 resource population

  • Guo, Tianfu;Gao, Jun;Yang, Bin;Yan, Guorong;Xiao, Shijun;Zhang, Zhiyan;Huang, Lusheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권5호
    • /
    • pp.704-711
    • /
    • 2020
  • Objective: Muscle fiber types, numbers and area are crucial aspects associated with meat production and quality. However, there are few studies of pig muscle fibre traits in terms of the detection power, false discovery rate and confidence interval precision of whole-genome quantitative trait loci (QTL). We had previously performed genome scanning for muscle fibre traits using 183 microsatellites and detected 8 significant QTLs in a White Duroc×Erhualian F2 population. The confidence intervals of these QTLs ranged between 11 and 127 centimorgan (cM), which contained hundreds of genes and hampered the identification of QTLs. A whole-genome sequence imputation of the population was used for fine mapping in this study. Methods: A whole-genome sequences association study was performed in the F2 population. Genotyping was performed for 1,020 individuals (19 F0, 68 F1, and 933 F2). The whole-genome variants were imputed and 21,624,800 single nucleotide polymorphisms (SNPs) were identified and examined for associations to 11 longissimus dorsi muscle fiber traits. Results: A total of 3,201 significant SNPs comprising 7 novel QTLs showing associations with the relative area of fiber type I (I_RA), the fiber number per square centimeter (FN) and the total fiber number (TFN). Moreover, one QTL on pig chromosome 14 was found to affect both FN and TFN. Furthermore, four plausible candidate genes associated with FN (kinase non-catalytic C-lobe domain containing [KNDC1]), TFN (KNDC1), and I_RA (solute carrier family 36 member 4, contactin associated protein like 5, and glutamate metabotropic receptor 8) were identified. Conclusion: An efficient and powerful imputation-based association approach was utilized to identify genes potentially associated with muscle fiber traits. These identified genes and SNPs could be explored to improve meat production and quality via marker-assisted selection in pigs.

Chromosome-specific polymorphic SSR markers in tropical eucalypt species using low coverage whole genome sequences: systematic characterization and validation

  • Patturaj, Maheswari;Munusamy, Aiswarya;Kannan, Nithishkumar;Kandasamy, Ulaganathan;Ramasamy, Yasodha
    • Genomics & Informatics
    • /
    • 제19권3호
    • /
    • pp.33.1-33.10
    • /
    • 2021
  • Eucalyptus is one of the major plantation species with wide variety of industrial uses. Polymorphic and informative simple sequence repeats (SSRs) have broad range of applications in genetic analysis. In this study, two individuals of Eucalyptus tereticornis (ET217 and ET86), one individual each from E. camaldulensis (EC17) and E. grandis (EG9) were subjected to whole genome resequencing. Low coverage (10×) genome sequencing was used to find polymorphic SSRs between the individuals. Average number of SSR loci identified was 95,513 and the density of SSRs per Mb was from 157.39 in EG9 to 155.08 in EC17. Among all the SSRs detected, the most abundant repeat motifs were di-nucleotide (59.6%-62.5%), followed by tri- (23.7%-27.2%), tetra- (5.2%-5.6%), penta- (5.0%-5.3%), and hexa-nucleotide (2.7%-2.9%). The predominant SSR motif units were AG/CT and AAG/TTC. Computational genome analysis predicted the SSR length variations between the individuals and identified the gene functions of SSR containing sequences. Selected subset of polymorphic markers was validated in a full-sib family of eucalypts. Additionally, genome-wide characterization of single nucleotide polymorphisms, InDels and transcriptional regulators were carried out. These variations will find their utility in genome-wide association studies as well as understanding of molecular mechanisms involved in key economic traits. The genomic resources generated in this study would provide an impetus to integrate genomics in marker-trait associations and breeding of tropical eucalypts.

Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data

  • Mingyue Hu;Lulu Shi;Wenfeng Yi;Feng Li;Shouqing Yan
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.461-470
    • /
    • 2024
  • Objective: The objective of this study was to investigate the genetic diversity, population structure and whole-genome selection signatures of Luxi cattle to reveal its genomic characteristics in terms of meat and carcass traits, skeletal muscle development, body size, and other traits. Methods: To further analyze the genomic characteristics of Luxi cattle, this study sequenced the whole-genome of 16 individuals from the core conservation farm in Shandong region, and collected 174 published genomes of cattle for conjoint analysis. Furthermore, three different statistics (pi, Fst, and XP-EHH) were used to detect potential positive selection signatures related to selection in Luxi cattle. Moreover, gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed to reveal the potential biological function of candidate genes harbored in selected regions. Results: The results showed that Luxi cattle had high genomic diversity and low inbreeding levels. Using three complementary methods (pi, Fst, and XP-EHH) to detect the signatures of selection in the Luxi cattle genome, there were 2,941, 2,221 and 1,304 potentially selected genes identified, respectively. Furthermore, there were 45 genes annotated in common overlapping genomic regions covered 0.723 Mb, including PLAG1 zinc finger (PLAG1), dedicator of cytokinesis 3 (DOCK3), ephrin A2 (EFNA2), DAZ associated protein 1 (DAZAP1), Ral GTPase activating protein catalytic subunit alpha 1 (RALGAPA1), mediator complex subunit 13 (MED13), and decaprenyl diphosphate synthase subunit 2 (PDSS2), most of which were enriched in pathways related to muscle growth and differentiation and immunity. Conclusion: In this study, we provided a series of genes associated with important economic traits were found in positive selection regions, and a scientific basis for the scientific conservation and genetic improvement of Luxi cattle.

A Whole Genome Association Study on Meat Palatability in Hanwoo

  • Hyeong, K.E.;Lee, Y.M.;Kim, Y.S.;Nam, K.C.;Jo, C.;Lee, K.H.;Lee, J.E.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권9호
    • /
    • pp.1219-1227
    • /
    • 2014
  • A whole genome association (WGA) study was carried out to find quantitative trait loci (QTL) for sensory evaluation traits in Hanwoo. Carcass samples of 250 Hanwoo steers were collected from National Agricultural Cooperative Livestock Research Institute, Ansung, Gyeonggi province, Korea, between 2011 and 2012 and genotyped with the Affymetrix Bovine Axiom Array 640K single nucleotide polymorphism (SNP) chip. Among the SNPs in the chip, a total of 322,160 SNPs were chosen after quality control tests. After adjusting for the effects of age, slaughter-year-season, and polygenic effects using genome relationship matrix, the corrected phenotypes for the sensory evaluation measurements were regressed on each SNP using a simple linear regression additive based model. A total of 1,631 SNPs were detected for color, aroma, tenderness, juiciness and palatability at 0.1% comparison-wise level. Among the significant SNPs, the best set of 52 SNP markers were chosen using a forward regression procedure at 0.05 level, among which the sets of 8, 14, 11, 10, and 9 SNPs were determined for the respectively sensory evaluation traits. The sets of significant SNPs explained 18% to 31% of phenotypic variance. Three SNPs were pleiotropic, i.e. AX-26703353 and AX-26742891 that were located at 101 and 110 Mb of BTA6, respectively, influencing tenderness, juiciness and palatability, while AX-18624743 at 3 Mb of BTA10 affected tenderness and palatability. Our results suggest that some QTL for sensory measures are segregating in a Hanwoo steer population. Additional WGA studies on fatty acid and nutritional components as well as the sensory panels are in process to characterize genetic architecture of meat quality and palatability in Hanwoo.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • 원예과학기술지
    • /
    • 제35권2호
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.