• Title/Summary/Keyword: White light emitting diode

Search Result 182, Processing Time 0.026 seconds

Low Voltage Driving White OLED with New Electron Transport Layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.252-256
    • /
    • 2009
  • We have developed low driving voltage white organic light emitting diode with a new electron transport material, triphenylphosphine oxide ($Ph_{3}PO$). The white light emission was realized with a rubrene yellow dopant and blue-emitting DPVBi layer. The new electron transport layer results in a very high current density at low voltage, resulting in a reduction of driving voltage. The device with a new electron transport layer shows a brightness of $1150\;cd/m^2$ at a low driving voltage of 4.3 V.

Study of Modulation Effect in Integrated Interface Under Controlling Switching Light-Emitting Diode Lighting Module

  • Hong, Geun-Bin;Jang, Tae-Su;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.253-257
    • /
    • 2011
  • This study was carried out to solve problems such as radio frequency band depletion, confusion risk, and security loss in existing visible wireless communication systems, and to determine the applicability of next-generation networks. A light-emitting diode (LED) light communication system was implemented with a controlling switching light module using the ATmega16 micro-controller. To solve the existing modulation effect and disturbance in visible light communication, an integrated interface was evaluated with a driving light module and analyzes its reception property. A transmitter/receiver using the ATmel's micro-controller, high-intensity white LED-6 modules, and infrared sensor KSM60WLM and visible sensor TSL250RD were designed. An experiment from the initial value of distance to 2.5 m showed 0.46 V of the voltage loss, and if in long distance, external light interference occurred and light intensity was lost by external impact and thus data had to be modified or reset repeatedly. Additionally, when we used 6 modules through the remote controller's lighting dimming, data could be transmitted up to 1.76 m without any errors during the day and up to 2.29 m at night with around 2~3% communication error. If a special optical filter can reduce as much external light as possible in the integrated interface, the LED for lighting communication systems may be applied in next generation networks.

Wound Recovery of Light Irradiation by White LED (백색 LED 조사의 상처 수복 효과)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.42-46
    • /
    • 2011
  • Light can be divided into ultraviolet rays, visible rays, and infrared rays depending on the wavelengths. Visible rays with specific wavelength are those predominantly used for would treatment. Especially low level laser irradiates into cells, effectively stimulating cellular tissues and activating cellular function. This study was intended to verify the effect of white LED irradiation therapy on wound recovery in animal tests by applying white LED irradiator, which was independently designed and developed to emit beams of similar wavelength to that of a laser. The designed LED Irradiator was used to find out how white LED light source affected the skin wound of SD-Rat(Sprague-Dawley Rat). We divided the participants into two groups; white LED irradiation group which was irradiated 1 hour a day for 9 consecutive days, and none irradiation group. The results showed that the study group had lower incidence of inflammation and faster recovery, compared with the control group.

Search for Mn4+-Activated Red Phosphor by Genetic Algorithm (유전 알고리즘을 이용한 Mn4+ 활성 적색 형광체 탐색)

  • Kim, Minseuk;Park, Woon Bae
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.312-317
    • /
    • 2017
  • In the construction of a white LED, the region of the red emission is a very important factor. Red light emitting materials play an important role in improving the color rendering index of commercial lighting. These materials also increase the color gamut of display products. Therefore, the development of novel phosphors with red emission and the study of color tuning are actively underway to improve product quality. In the present study, heuristic algorithms were used to search for phosphors capable of increasing the color rendering index and color gamut. Using a heuristic algorithm, the phosphors that were identified were $SrGe_4O_9:Mn^{4+}$ and $BaGe_4O_9:Mn^{4+}$. Emission spectra study confirmed that these phosphors emit light in the deep red wavelength region, which can fulfill the requirement for the improvement in color rendering index and color gamut for a white LED.

Development of Dispenser System with Electrohydrodynamic and Voice Coil Motor for White Light Emitting Diode (백색 LED 제조를 위한 정전기력과 보이스코일모터를 이용한 디스펜서 시스템 개발)

  • Kang, Dong-Seong;Kim, Ki-Beom;Ha, Seok-Jae;Cho, Myeong-Woo;Lee, Woo-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6925-6931
    • /
    • 2015
  • LED(Light Emitting Diode) is used in various filed like a display because of low power consuming, long life span, high brightness, rapid response time and environmental-friendly characteristic. General fabrication method is combination blue light LED chip with yellow fluorescent substance. Because this way is suitable for industry field in terms of convenience, economic, efficiency. In white light LED packaging process, encapsulation process that is dispensing fluorescent substance with silicon to blue light LED chip is most important. So, in this paper we develop EHD pump system using voice coil motor and electrostatic pump for dispensing fluorescent substance. For these things we conduct basic test about liquid surface profiles by voltage and process time. Through this data we decide optimal process condition and verify the optimal condition using design of experiment method. And to confirm uniformity of the condition, we conduct repeat dispensing test.

Synthesis and Luminescence Properties of Sr/SmSi5N8:Eu2+ Phosphor for White Light-Emitting-Diode

  • Luong, Van Duong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.192-197
    • /
    • 2014
  • Red-emitting nitride phosphors recently attracted considerable attention because of their high thermal stability and high color rendering index properties. For excellent phosphor of white light-emitting-diode, ternary nitride phosphor of $Sr/SmSi_5N_8:Eu^{2+}$ with different $Eu^{2+}$ ion concentration were synthesized by solid state reaction method. In this work, red-emitting nitride $Sr/SmSi_5N_8:Eu^{2+}$ phosphor was successfully synthesized by using multi-step high frequency induction heat treatment. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Sr/SmSi_5N_8:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Sr/SmSi_5N_8:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 300 - 550 nm, namely from UV to visible area with distinct enhanced emission peaks. With an increase of $Eu^{2+}$ ion concentration, the peak position of emission in spectra was red-shifted from 613 to 671 nm. After via multi-step heat treatment, prepared phosphor showed excellent luminescence properties, such as high emission intensity and low thermal quenching, better than commercial phosphor of $Y_3Al_5O_{12}:Ce^{3+}$. Using $Eu_2O_3$ as a raw material for $Eu^{2+}$ dopant with nitrogen gas flowing instead of using commercial EuN chemical for $Sr/SmSi_5N_8:Eu^{2+}$ synthesis is one of characteristic of this work.

Synthesis and Properties of Ca8Gd2(PO4)6O2 Nano-Crystalline Structures

  • Bharat, L. Krishna;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.286.1-286.1
    • /
    • 2013
  • Nowadays, the glare towards the light-emitting diode (LED) lighting source has much attention due to its eco-friendly nature, reduced energy consumption, and low CO2 emission. LEDs can show versatile colors by changing the composition ratio of semiconductors. Phosphors re-emit light by absorbing light from LED, which is the key factor for emission. The endeavor to make replica of natural white light is increasing day by day. Industrially, blue LED chip crowned with a yellow phosphor coated lens gives low quality white light. Newly, many researchers are introducing modern approaches, adding red phosphor to the yellow phosphor to increase the quality of white light. Here, we synthesized structurally and chemically stable europium doped oxyapatite Ca8Gd2(PO4)6O2 nano-crystalline structures by a hydrothermal method. The ultrafine structures were formed due to the effect of ethylenediaminetetraacetic acid, which is confirmed by the transmission electron microscope images. The structural properties were analyzed using the X-ray diffraction patterns.

  • PDF

Optical and electrical characteristics of White OLEDs (White OLEDs의 전기 및 광학적 특성 평가)

  • Hwang, Sun-Pil;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.25-26
    • /
    • 2008
  • In this paper, the white organic light-emitting diode(OLED)was fabricated using the DPVBi of blue emitting material and a rubrene of orange color of fluorescent dye by vacuum evaporation processes. The device structure of OLED was Glass/ITO/2T-NATA(15nm)/NPB(3nm)/DPVBi(3nm)/DPVBi rubrene[2%](10nm)/DPVBi(25nm)/$Alq_3$ or New-ETL(60nm) /LiF(0.5nm)/ Al(100nm). The device with the $Alq_3$, layer shows orange color, and the luminance of 1000cd/$m^2$ at an applied voltage of 10.4V. On the other hand, the New-En layer results in white color, CIE coordinates of (0.327, 0.323), and the lowered driving voltage of 5V for achieving the same luminance value.

  • PDF

Advances in blue and white Light Emitting Diode using AlInGaN mesa structure and Display Module

  • Park, Book-Sung;Kim, Sung-Woon;Jung, In-Sung;Lee, Seon-Gu;Son, Sung-Il;Lee, Jee-Myun;Kim, Eun-Tae;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.347-348
    • /
    • 2008
  • The main goal of this work is advances in 1.0mm $\times$ 0.5mm light emitting diode using AlInGaN cell structure and display module. In the first place, we proposed $200{\mu}m{\times}200{\mu}m$ cell structure using AlInGaN. Secondly, we describe new type 1.0mm $\times$ 0.5mm blue and white LED fabrication procedure and results of an examination include mobile application.

  • PDF

Effect of Light Emitting Diode on Growth and Flowering of Oriental Melon (Cucumis melo L. var makuwa Makino)

  • Shin, Y.S.;Lim, Y.S.;Lee, M.J.;Han, Y.Y.;Park, S.D.;Chae, J.H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.203-205
    • /
    • 2011
  • Investigation on oriental melon was carried out for 30 minutes starting at 7 PM every day from March 21 to May 24 to find out the effect of light emitting diode on seedling quality, grafting, growth and flowering of oriental melon. According to the result of the investigation, plant height was longer in Blue, Infrared, Red+Blue and Red treatment and leaf number was higher in Blue, Red+Blue and Infrared treatment than those of control. No big difference was identified between control and Yellow, Green, Ultraviolet treatments. Grafting rate was high in Green, Red+Blue and Green treatment. The number of flower every week in control was nine, the number was almost 1 higher in White and Ultraviolet A treatments, but it was 1 to 4 lower in the rest of treatments. The number of female flowers of control was 10, however, it was 21 in Infrared treatment, 17 in White, 15 in Ultraviolet, 13 in Red+lnfrared, 12 in Blue and Red+Blue, 11 in Yellow and 8 in Green.