• 제목/요약/키워드: White LED light

검색결과 403건 처리시간 0.036초

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • 제19권3호
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

New Type of White-light LED Lighting for Illumination and Optical Wireless Communication under Obstacles

  • Choi, Su-il
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.203-209
    • /
    • 2012
  • Visible light communications (VLC) use modern solid-state light-emitting diodes (LEDs) to broadcast information. Emerging white-light LEDs allow the combination of lighting and optical wireless communication in one optical source. In this paper, a new LED lighting design using one-chip-type white LEDs is proposed for efficient illumination and optical wireless communications under the existence of several obstacles. Lighting and communication performance are analyzed to show the effectiveness of the proposed LED lighting. Specifically, the signal-to-noise ratio considering intersymbol interference and the bit-error rate of variable pulse position modulation (VPPM) with dimming control are considered.

조명용 고출력 백색 LED와 프레넬 렌즈를 이용한 가시광 통신 성능연구 (Performance Investigation of Visible Light Communication Using Super Bright White LED and Fresnel Lens)

  • 김민수;손경락
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.63-67
    • /
    • 2015
  • 백색 발광 다이오드는 조명과 통신이 동시에 가능하여 많은 주목을 받고 있다. 본 논문에서는 고출력 백색 LED와 저가형 광 다이오드, 프레넬 렌즈로 구성된 가시광 통신의 특성을 연구하였다. LED 구동회로는 고전력 MOSFET과 MOSFET 전용 구동칩을 사용하여 LED가 고속으로 온오프 되게 스위칭 하였다. 사용한 LED의 대역폭은 8 MHz로 측정되었다. 그러나 실내 조명환경을 고려한 500 lx 조도 하에서 통신 속도는 PIN 광 다이오드인 SFH213의 낮은 스펙트럼 감도와 낮은 신호전력으로 인해 1 Mbps까지만 가능하였다. 시스템 대역폭을 확장하기 위하여 프레넬 렌즈를 적용한 경우 수신단의 PIN 광 다이오드에 LED의 집광된 광 전력이 입사되도록 하여 LED의 대역폭까지 변조될 수 있었다. 프레넬 렌즈에 의한 신호대 잡음비는 40 dB 이상 향상되었다.

식물 재배기의 효율적인 LED 조명 시스템 설계 (Efficient LED lighting system design of the plant growing system)

  • 안교명;홍영진;김환용
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7256-7261
    • /
    • 2015
  • 본 논문은 식물 재배시스템을 제작하고 LED 광원은 단색광 3개(적색, 청색, 백색), 혼합광 3개(적색1+청색1, 적색2+청색1, 적색1+청색2)를 제작하여 사용하였다. 제작한 식물 재배시스템을 이용하여 LED 광원별 광 특성, 광량의 변화에 따른 조도 및 PPFD의 특성과 식물성장을 분석하였다. 분석결과 LED 광원의 광 효율은 백색 광원이 125 lm/W로 높으며 적색1+청색2 광원은 9.9 lm/W로 낮았다. 이러한 결과로 단색광이 혼합광 보다 광효율이 좋은 것을 확인 할 수 있었다. LED의 파장별 PPFD ($25{\mu}mol$, $50{\mu}mol$, $100{\mu}mol$) 조도값 크기는 백색 LED가 높으며 청색 LED가 낮았다. 따라서 LED 광원의 다양한 단색 혼합광 파장대역 조합에 따라 식물성장에 적합한 효율적인 LED 조명 시스템을 구성할 수 있다.

LED 광원에 적합한 새로운 구조의 반사경의 설계 및 제작 (The Design and Fabrication of New Structure Reflector for LED Source)

  • 정학근;정봉만;한수빈;박석인;김규덕
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.154-156
    • /
    • 2006
  • A few ten mW white LED can substitute for the indicator light source and it is required to study several watt multi-chip semiconductor light sources in order to replace the light sources for general illumination such as incandescent lights and fluorescent lanes. Since the optical technology used for several mW white LED light source uses only 30% to 52% of the light it is required to develop the design technology of optical system and lens to improve the efficiency more than 80% for insuring the high power of white LED. In this paper, we designed and fabricated new structure reflector to increase the efficiency and is easy to make high power multi-chip LED lamp.

  • PDF

RGB LED를 이용한 광원의 광학적 배치에 따른 White Light 구현에 관한연구 (A study on the white light incarnation that optical arrangement for light-source using RGB LED)

  • 이현룡;이성진;황경준;김관규;김용갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1566-1567
    • /
    • 2007
  • As the brightness of LED is getting higher, the lighting products using LED are actively being developed. On this study, we researched the characteristics and changes caused by the optical arrangement of LED light source, which applies to illumination by using the optical design programme. The changes were estimated by simulating regarding the arrangement of each form and measurement distance. As a result of the experiment. Intensity increased by 1 and Illuminance increased by around 10, as It changed a triangle into a pentagon. To realize white light, RGBG LED formation was the most efficient in case of square arrangement.

  • PDF

The effects of light colour on female rabbit reproductive performance and the expression of key genes in follicular development

  • Xiaoqing, Pan;Xinglong, Wang;Le, Shao;Jie, Yang;Feng, Qin;Jian, Li;Xia, Zhang;Pin, Zhai
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.432-442
    • /
    • 2022
  • The purpose of this study was to analyse the effects of light colour on rabbit reproductive performance and the expression of key follicular development genes. Rabbits (n = 1,068, 5 months old, 3.6-4.4 kg live body weight) were divided randomly into four groups, housed individually in wire mesh cages and exposed to red, green, blue, and white light-emitting diode (LED) light (control). The lighting schedule was 16 L : 8 D-15 d / 150 lx / 6:00 am-22:00 pm (3 d preartificial insemination to 12 d postartificial insemination). Red light and white light affected the conception rate and kindling rate and increased the total litter size at birth (p < 0.05). The effects of red light on litter size at weaning, litter weight at weaning, and individual weight at weaning increased compared with the green and blue groups. The effects of red light on live litter size at birth were increased compared with those in the blue group (p < 0.05). Compared to white light, green and blue light reduced the number of secondary follicles (p < 0.05). Compared to red light, green and blue light reduced the number of tertiary follicles (p < 0.05). Compared with white light, red LED light resulted in greater ovarian follicle stimulating hormone receptor and luteinizing hormone receptor mRNA expression (p < 0.05). Compared with green and blue LED light, red LED light resulted in greater B-cell lymphom-2 mRNA expression (p < 0.05). Compared with green LED light, red LED light inhibited FOXO1 mRNA expression in rabbit ovaries (p < 0.05). Red light can affect the reproductive performance of female rabbits and the expression of key genes for follicular development.

RGB LED를 이용한 LCD-Back Light Unit 설계 (LCD-Back Light Unit design of using with RGB LED)

  • 이현룡;황경준;김관규;김용갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1564-1565
    • /
    • 2007
  • In comparison with CCFL, LED can have more various colours. The research into BLU to raise colour reproducibility is actively proceeding by using RGB LED. On this study, Direct BLU was designed by white LED and RGB LED. According to the result of the experiment, the colour uniformity degree of BLU model using white LED is better than RGB LED BLU. On the other hand, the colour reproducibility of RGB LED BLU is better than white LED. The research showed that the uniformity of white LED is 81.7%and RGB LED is 70.01%.

  • PDF

Deep Blue LED 광원과 형광체를 이용한 초고연색 백색 인공태양광 LED 소자의 개발 (Development & Reliability Verification of Ultra-high Color Rendering White Artificial Sunlight LED Device using Deep Blue LED Light Source and Phosphor)

  • 안종욱;권대규
    • 산업경영시스템학회지
    • /
    • 제46권3호
    • /
    • pp.59-68
    • /
    • 2023
  • Currently, yellow phosphor of Y3Al5O12:Ce3+ (YAG:Ce) fluorescent material is applied to a 450~480nm blue LED light source to implement a white LED device and it has a simple structure, can obtain sufficient luminance, and is economical. However, in this method, in terms of spectrum analysis, it is difficult to mass-produce white LEDs having the same color coordinates due to color separation cause by the wide wavelength gap between blue and yellow band. There is a disadvantage that it is difficult to control optical properties such as color stability and color rendering. In addition, this method does not emit purple light in the range of 380 to 420nm, so it is white without purple color that can not implement the spectrum of the entire visible light spectrum as like sunlight. Because of this, it is difficult to implement a color rendering index(CRI) of 90 or higher, and natural light characteristics such as sunlight can not be expected. For this, need for a method of implementing sunlight with one LED by using a method of combining phosphors with one light source, rather than a method of combining red, blue, and yellow LEDs. Using this method, the characteristics of an artificial sunlight LED device with a spectrum similar to that of sunlight were demonstrated by implementing LED devices of various color temperatures with high color rendering by injecting phosphors into a 405nm deep blue LED light source. In order to find the spectrum closest to sunlight, different combinations of phosphors were repeatedly fabricated and tested. In addition, reliability and mass productivity were verified through temperature and humidity tests and ink penetration tests.

White Light -Emitting Diodes with Multi-Shell Quantum Dots

  • Kim, Kyung-Nam;Han, Chang-Soo;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.92-92
    • /
    • 2010
  • Replacing the existing illumination with solid-state lighting devices, such as light-emitting diodes (LEDs) are expected to reduce energy consumption and environmental pollution as they provide better efficiency and longer lifetimes. Currently, white light emitting diodes are composed of UV or blue LED with down-converting materials such as highly luminescent phosphors White light-emitting diodes (LED) were fabricated with multi-shell nanocrystal quantum dots for enhanced luminance and improved stability over time. Multi-shell quantum dots (QDs) were synthesized through one pot process by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. As prepared, the multi-shell QD has cubic lattice of zinc-blend structure with semi-spherical shape with quantum yield of higher than 60 % in solution. Further, highly fluorescent multi-shell QD was deposited on the blue LED, which resulted in QD-based white LED with high luminance with excellent color rendering properties.

  • PDF