• Title/Summary/Keyword: Whirl Speed

Search Result 64, Processing Time 0.016 seconds

A Study on the Performance of Slot Restrictor Bearing with a Variation in Circumferential Direction (원주방향 변화를 갖는 슬롯 레스트릭터 베어링의 성능 연구)

  • 박정구;김경웅
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • A slot restrictor air journal bearing has high load capacity and high stiffness. The stability characteristics of the slot restrictor air journal bearing are studied theoretically and experimentally to forecast and to prevent the whirl instability. As for the high speed rotating machinery, the instability called'whirl'occurs when the rotor rotates at a speed more than twice the resonant speed. Once the whirl occurs, rubbing contact between the journal and the bearing occurs mostly and the bearing-rotor system is destroyed ultimately. Therefore, the forecasting and prevention of the occurrence of whirl instability is a very important subject especially to develop highly efficient high speed rotating machinery. The bearing with the slot restrictor that varies about circumferential direction is used for the purpose of the prevention of whirl instability.

A study on performance of slot restrictor bearing with a variation in circumferencial direction (원주방향 변화를 갖는 슬롯 레스트릭터 베어링의 성능 연구)

  • 박정구;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.350-357
    • /
    • 1998
  • Slot restrictor air journal bearing has high load capacitance and high stiffness. Stability characteristics of slot restrictor air journal bearing are studied theoretically to forecast and to prevent the whirl instability. As for the high speed rotating machinery, the instability called 'whirl' occurs when the rotor rotates at a speed more than twice the resonant speed. Once the whirl occurs, rubbing contact between the journal and the bearing occurs mostly and the bearing-rotor system is destroyed ultimately. Therefore, the forecasting and prevention of the occurence of whirl instability is a very important subject especially to develop highly efficient high speed machinery. The bearing with the slot restrictor that varies about circumferencial direction is used for the purpose of the prevention of whirl instability.

  • PDF

Moment Whirl due to Leakage Flow in the Back Shroud Clearance of a Rotor

  • Tsujimoto, Yoshinobu;Ma, Zhenyue;Song, Bing-Wei;Horiguchi, Hironori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • Recent studies on the moment whirl due to leakage flow in the back shroud clearance of hydro-turbine runners or centrifugal pump impellers are summarized. First, destabilizing effect of leakage flow is discussed for lateral vibrations using simplified models. Then it is extended to the case of whirling motion of an overhung rotor and the criterion for the instability is obtained. The fluid moment caused by a leakage clearance flow between a rotating disk and a stationary casing was obtained by model tests under whirling and precession motion of the disk. It is shown that the whirl moment always destabilizes the whirl motion of the overhung rotor while the precession moment destabilizes the precession only when the precession speed is less than half the rotor speed. Then vibration analyses considering both whirl and precession are made by using the hydrodynamic moments determined by the model tests. For larger overhung rotors, the whirl moment is more important and cause whirl instability at all rotor speed. On the other hand, for smaller overhung rotors, the precession moment is more important and cancels the destabilizing effect of the whirl moment.

Analysis of whirl behavior follow bearing stiffness in a small size and high speed CNC lathe spindle system using F.E.M. (유한요소법을 이용한 소형 고속 CNC 선반 스핀들 시스템의 베어링 강성에 따른 휘돌림 궤적 특성 연구)

  • Kim, Mu-Su;Lee, Jae-Hoon;Lee, Su-Min;Lee, Shi-Bok;Park, Seong-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.182-183
    • /
    • 2008
  • In this study, rotor dynamic analysis have been conducted using three-dimensional solid model. Analysis object has smaller size and higher speed than any general CNC spindle. It is important to consider the real supporting conditions and external forces for whirl behavior analysis. As a results, the bearing stiffness is higher, whirl motion is less than before.

  • PDF

Numerical and Experimental Study on the Fire Whirl Characteristics of Oriental Oak Leaves (굴참나무 낙엽의 Fire Whirl 특성에 관한 실험 및 수치해석 연구)

  • Bae, Sung-Yong;Ryou, Hong-Sun;Hong, Gi-Bae
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.73-78
    • /
    • 2009
  • The fire whirl occurring in the urban and/or wildland fire is generated by the instabilities of atmosphere. The fire whirl is a rare phenomenon, but highly destructive because it has high inhalation and lift force. In this study, experimental and numerical studies are performed with oriental oak leaves, for investigating of the fire whirl characteristics occurred in wildland fire. As a result of experiment, the circulation intensity increases as the induced air speed increases, then the heat release rate and flame height increase 22.8%, 18.4% compared with open fire in highest circulation. Furthermore the numerical results shows same trend with the experiment.

Effect of friction and eccentricity on rebbing phenomenon (회전마멸현상에서의 마찰과 편심의 영향)

  • 최연선;김준모;정호권
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.819-825
    • /
    • 1996
  • Nonlinear dynamic characteristics of rubbing phenomenon in rotor dynamics are investigated experimentally and numerically. Rubbing phenomenon occurs when rotor contacts with stator during whirling and causes the large amplitude of vibration, high whirl frequencies, and possibly catastrophic failure. Rubbing has various types of forward whirl, backward rolling, backward slipping, and partial rub depending on the system parameters of rotating machinery and running speed. Experiments are performed for forward whirl and backward whirl. And numerical analysis are conducted to explain the changes between backward rolling and backward slipping. Experimental and numerical results show that the types of whirling motion depends on the friction coefficient between rotor and stator and the eccentricity of rotor.

  • PDF

A Study on Dynamic Characteristics of Synchronously Controlled Hydrodynamic Journal Bearing (동기 제어되는 동압 베어링의 동특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.311-315
    • /
    • 2001
  • In this paper synchronous whirl of bearing is employed as control algorithm of actively controlled hydrodynamic journal bearing to suppress the whirl instability and unbalance response of a rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability and unbalance responses of a rotor-bearing system are investigated for various control gain and phase difference between the bearing and journal motion. It is shown that the unbalance response of a rotor-bearing system can be greatly improved by synchronous whirl of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, at given operating condition. It is also found that the speed at onset of instability can be greatly increased by synchronous whirl of the bearing.

  • PDF

Analysis of Dynamic Behavior and Balancing of High Speed Spindle (고속 스핀들의 동적거동과 밸런싱 해석)

  • Koo, Ja-Ham;Kwon, Soon-Goo;Kim, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.238-244
    • /
    • 2017
  • A spindle with a built-in motor can be used to simplify the structure of a machine tool system, but the rotor inevitably has unbalanced mass. This paper presents an analysis of the dynamic behavior. The spindle was used in a CNC lathe and investigated using the finite element method and transfer matrices. The high-speed spindle can be very sensitive to the rotation of an unbalanced mass, which has a harmful effect on many machine tools. Thus, a balancing procedure was performed with a spindle-bearing system for the CNC lathe by numerical analysis. The balancing was performed through the influence coefficient method, and the whirl orbit radii before and after balancing were compared to evaluate the effects. The results show that the rotational speed of the spindle seriously affects the whirl responses of the spindle. The whirl responses were also affected by other factors, such as the unbalanced mass and bearing stiffness. The balancing of the assembled spindle model significantly reduced the whirl orbit magnitude.

A Study on Balancing of High-speed Spindle of CNC Automatic Lathe (CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구)

  • Kim, Tae-Jong;Koo, Ja-Ham;Lee, Shi-Bok;Kim, Moon-Saeng
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV (스마트무인기 로터 공탄성 및 훨플러터 안정성 해석)

  • 김도형;이주영;김유신;이명규;김승호
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.75-82
    • /
    • 2006
  • Tiltrotor aircraft can fly about twice faster and several times further than conventional helicopters. These aircraft provide advantages preventing compressibility of advancing side and stall of retreating side of blades because they take forward flight with tilting rotor systems. However, they have limit on forward flight speed because of the aeroelastic instability known as whirl flutter. First, the parametric study on the aeroelastic stability of the isolated rotor system has been performed in this paper. And the effects of pitch-link stiffness, gimbal spring constant, and precone angle on the whirl flutter stability of Smart-UAV have been investigated through CAMRAD II analysis.