• Title/Summary/Keyword: Whirl Instability

Search Result 34, Processing Time 0.022 seconds

A Study on the Performance of Slot Restrictor Bearing with a Variation in Circumferential Direction (원주방향 변화를 갖는 슬롯 레스트릭터 베어링의 성능 연구)

  • 박정구;김경웅
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • A slot restrictor air journal bearing has high load capacity and high stiffness. The stability characteristics of the slot restrictor air journal bearing are studied theoretically and experimentally to forecast and to prevent the whirl instability. As for the high speed rotating machinery, the instability called'whirl'occurs when the rotor rotates at a speed more than twice the resonant speed. Once the whirl occurs, rubbing contact between the journal and the bearing occurs mostly and the bearing-rotor system is destroyed ultimately. Therefore, the forecasting and prevention of the occurrence of whirl instability is a very important subject especially to develop highly efficient high speed rotating machinery. The bearing with the slot restrictor that varies about circumferential direction is used for the purpose of the prevention of whirl instability.

A study on performance of slot restrictor bearing with a variation in circumferencial direction (원주방향 변화를 갖는 슬롯 레스트릭터 베어링의 성능 연구)

  • 박정구;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.350-357
    • /
    • 1998
  • Slot restrictor air journal bearing has high load capacitance and high stiffness. Stability characteristics of slot restrictor air journal bearing are studied theoretically to forecast and to prevent the whirl instability. As for the high speed rotating machinery, the instability called 'whirl' occurs when the rotor rotates at a speed more than twice the resonant speed. Once the whirl occurs, rubbing contact between the journal and the bearing occurs mostly and the bearing-rotor system is destroyed ultimately. Therefore, the forecasting and prevention of the occurence of whirl instability is a very important subject especially to develop highly efficient high speed machinery. The bearing with the slot restrictor that varies about circumferencial direction is used for the purpose of the prevention of whirl instability.

  • PDF

Moment Whirl due to Leakage Flow in the Back Shroud Clearance of a Rotor

  • Tsujimoto, Yoshinobu;Ma, Zhenyue;Song, Bing-Wei;Horiguchi, Hironori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • Recent studies on the moment whirl due to leakage flow in the back shroud clearance of hydro-turbine runners or centrifugal pump impellers are summarized. First, destabilizing effect of leakage flow is discussed for lateral vibrations using simplified models. Then it is extended to the case of whirling motion of an overhung rotor and the criterion for the instability is obtained. The fluid moment caused by a leakage clearance flow between a rotating disk and a stationary casing was obtained by model tests under whirling and precession motion of the disk. It is shown that the whirl moment always destabilizes the whirl motion of the overhung rotor while the precession moment destabilizes the precession only when the precession speed is less than half the rotor speed. Then vibration analyses considering both whirl and precession are made by using the hydrodynamic moments determined by the model tests. For larger overhung rotors, the whirl moment is more important and cause whirl instability at all rotor speed. On the other hand, for smaller overhung rotors, the precession moment is more important and cancels the destabilizing effect of the whirl moment.

A Study on Dynamic Characteristics of Synchronously Controlled Hydrodynamic Journal Bearing (동기 제어되는 동압 베어링의 동특성에 관한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.311-315
    • /
    • 2001
  • In this paper synchronous whirl of bearing is employed as control algorithm of actively controlled hydrodynamic journal bearing to suppress the whirl instability and unbalance response of a rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than conventional analysis which uses the Reynolds condition. The stability and unbalance responses of a rotor-bearing system are investigated for various control gain and phase difference between the bearing and journal motion. It is shown that the unbalance response of a rotor-bearing system can be greatly improved by synchronous whirl of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, at given operating condition. It is also found that the speed at onset of instability can be greatly increased by synchronous whirl of the bearing.

  • PDF

A Study on the Stability Characteristics of Actively Controlled Externally Pressurized Air Journal Bearing (능동 제어되는 외부 가압 공기 베어링의 안정 특성에 관한 연구)

  • Lee, Jeong-Bae;Kim, Gyeong-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.543-549
    • /
    • 2000
  • Results of theoretical investigations of the stability characteristics of an actively controlled externally pressurized air journal bearing are presented. Proportional control and derivative control are used for the control algorithm of active air bearing. The stability characteristics of the actively controlled bearing operating at zero steady-state eccentricity is investigated with the step jump method. The speed at onset of instability is raised for both proportional control and derivative control of bearing. Proportional control increased the stability threshold without affecting the whirl ratio. But for derivative control of bearing, stability threshold increase is accompanied by a parallel reduction of the whirl ratio. Results show active control of bearing can be adopted for the stability improvement of air journal bearing.

A Study on Synchronously Whirling Motion of Hydrodynamic Journal Bearings (저널 베어링의 동기화된 선회 운동에 관한 연구)

  • Kim, Gyeong-Ung;No, Byeong-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1432-1437
    • /
    • 2001
  • In this paper, a control algorithm which is synchronously excitating the bearing with whirl speed of rotor is employed to suppress the whirl instability and unbalance response of the rotor-bearing system. Also, the cavitation algorithm implementing the Jakobsson-Floberg-Olsson boundary condition is adopted to predict cavitation regions in the fluid film more accurately than a conventional analysis with the Reynolds condition. The stabilities and unbalance responses of the rotor-bearing system are investigated for various control gains and phase differences between the bearing and journal motion. It is shown that the unbalance response of the system can be greatly improved by synchronous control of the bearing, and there is an optimum phase difference, which gives the minimum unbalance response of the system, for given operating condition. It is also found that the onset speed of the instability can be greatly increased by synchronous control of the bearing.

Flow Characteristics of Fire Whirl for Different Heat Release Rate (발열량의 차이에 따른 Fire Whirl의 유동특성)

  • Bae, Sung-Yong;Sung, Kun-Hyuk;Ryou, Hong-Sun;Hong, Ki-Bae;Kim, Dong-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.609-613
    • /
    • 2008
  • The fire whirl occurring by the instability of atmosphere is a rare phenomenon, but highly destructive because it has high inhalation and lift force, caused by the rotating velocity. And it is difficult to extinguish the fire, because of increment of the spread rate with the flame height. In this study, for investigation of the flow characteristic of fire whirl for various heat release rate, numerical analysis is performed in same conditions with experiments, using the FDS which is developed at NIST. For validating of the numerical study, the results are compared with the experiment. The result shows that the relation between the characteristic length and the ratio of circulation versus the buoyancy force is $z_f$/D$^{\ast}$ = 0.304(${\Omega}/{\alpha}$)^2 - 1.334${\Omega}/{\alpha}$ + 5.516.

  • PDF

Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV (스마트무인기 로터 공탄성 및 훨플러터 안정성 해석)

  • 김도형;이주영;김유신;이명규;김승호
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.75-82
    • /
    • 2006
  • Tiltrotor aircraft can fly about twice faster and several times further than conventional helicopters. These aircraft provide advantages preventing compressibility of advancing side and stall of retreating side of blades because they take forward flight with tilting rotor systems. However, they have limit on forward flight speed because of the aeroelastic instability known as whirl flutter. First, the parametric study on the aeroelastic stability of the isolated rotor system has been performed in this paper. And the effects of pitch-link stiffness, gimbal spring constant, and precone angle on the whirl flutter stability of Smart-UAV have been investigated through CAMRAD II analysis.

A Study on the Stability of Geared Systems Subjected to Torsional and Lateral Instability (비틀림진동 및 행진동을 받는 기어시스템의 안정화에 관한 연구)

  • Ro, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.103-114
    • /
    • 1990
  • Many high speed mechanical systems incorporate gearing for speed reduction. This study investigates the stability of mulit-rotor geared systems supported on oil film bearings taking into consideration the coupling between torsional and lateral dynamics. The emphasis of the study is on the analysis of the interaction between the combined torsional and whirl insta- bilities. The feasility of inducing a lateral and the torsional instability to neutralize an anticipated unstable condition is investigated. The possibility of suppressing the instabilities by controlling the parameters of the oil film bearings is also considered.

  • PDF

Effects of Asymmetry of Bearing Damper Stiffness on the Stability of Rotors (베어링 지지댐퍼 강성의 비대칭이 회전체 동특성에 미치는 영향)

  • 제양규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.463-469
    • /
    • 2004
  • In order to improve the instability of journal bearings, the leaf spring dampers (LSD) are introduced. The effects of LSD on the stability of journal bearings are investigated theoretically The stability of the journal bearing with LSD are compared with the results of the journal bearing without LSD. And the effects of the asymmetry of the stiffness of the leaf spring damper on the stability of rotors are also investigated.