• Title/Summary/Keyword: Wheelchair Dynamometer

Search Result 4, Processing Time 0.022 seconds

An Inverse Dynamic Model of Upper Limbs during Manual Wheelchair Propulsion (수동 휠체어 추진 중 상지 역동역학 모델)

  • Song, S.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2013
  • Manual wheelchair propulsion can lead to pain and injuries of users due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper limbs during manual wheelchair propulsion needs to be studied. A two dimensional inverse dynamic model of upper limbs was developed to compute the joint torque during manual wheelchair propulsion. The model was composed of three segments corresponding to upper arm, lower arm and hand. These segments connected in series by revolute joints constitute open chain mechanism in sagittal plane. The inverse dynamic method is based on Newton-Euler formalism. The model was applied to data collected in experiments. Kinematic data of upper limbs during wheelchair propulsion were obtained from three dimensional trajectories of markers collected by a motion capture system. Kinetic data as external forces applied on the hand were obtained from a dynamometer. The joint rotation angles and joint torques were computed using the inverse dynamic model. The developed model is for upper limbs biomechanics and can easily be extended to three dimensional dynamic model.

  • PDF

Development of Driving System for Power Add-on Drive Wheelchair (수전동 휠체어용 구동장치 개발)

  • Hong, Eung-Pyo;Kim, Yong-Cheol;Kim, Gyoo-Suk;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1110-1118
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity and easier transportability and may be an excellent alternative for the typical manual and powered wheelchairs. The driving system consists of a motor and a motor driver is the most important component of the PADW In this paper, design, implementation, and testing of a driving system for a PADW are presented. To design the output power and torque for the driving system, the equation of motion has been investigated. The motor and driver were fabricated with precise machining and assembled to implement our prototype driving system. The dynamometer test has been carried out using the prototype in order to examine the torque of the system. The experimental results demonstrates that the designed driving system can provide enough output power and efficiency for utilization in a PADW.

Development of In-wheel Motor for Power Add-on Drive Wheelchair (수전동 휠체어용 모터 개발)

  • Hong, Eung-Pyo;Park, Sei-Hoon;Oh, Hong-Seok;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.