• 제목/요약/키워드: Wheel for Car

검색결과 267건 처리시간 0.032초

후륜 조향각 결정을 통한 통합 섀시 제어기의 성능 향상 (Performance Improvement of Integrated Chassis Control with Determination of Rear Wheel Steering Angle)

  • 임성진
    • 대한기계학회논문집A
    • /
    • 제41권2호
    • /
    • pp.111-119
    • /
    • 2017
  • 본 논문은 자세 제어 장치(ESC)와 후륜 조향 장치(RWS)를 장착한 통합 섀시 제어기의 성능을 향상시키기 위해 후륜 조향각을 결정하는 방법을 제안한다. 차량을 안정화시키기 위해 필요한 제어 요 모멘트는 자세 제어 장치와 후륜 조향 장치를 이용하여 만들어진다. 각 장치의 타이어 힘을 결정하기 위해 의사역행렬 제어할당 방법을 적용한다. 제어기의 성능을 향상시키기 위해 후륜 조향 장치의 조향각을 결정하는 데에 네 가지 방법을 적용한다. 차량 시뮬레이션 패키지인 CarSim에서 시뮬레이션을 수행하여 제안된 방법들이 통합 섀시 제어기의 성능을 향상시킬 수 있음을 검증한다.

축소형 철도차량의 설계변수에 따른 횡진동 해석 (Lateral Vibration Analysis for Design Parameter of the Scale Model of a Railway Vehicle)

  • 이승일;최연선
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1231-1237
    • /
    • 2006
  • The vibration of a running railway vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a of the scale model of a railway vehicle. Also, the effects on the car-body, bogie and wheelset were examined for the weight and the stiffness of the second suspension system. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension system increase. And the lateral vibration of the bogie increases as the mass ratio between car-body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발 (Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension)

  • 정홍규;김상섭
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

대용량 인휠 모터용 중공축 냉각유로의 형상 최적화에 관한 연구 (A Study on Shape Optimization of Cooling Channel in Hollow Shaft for In-wheel Motor)

  • 임동현;김동현;김성철
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.72-80
    • /
    • 2013
  • For the proper cooling of in-wheel motor, the cooling channel should have the characteristics which are low pressure drop and adequate cooling oil supply to motor part. In this study, the flow performance of cooling channel for in-wheel motor was evaluated and the shape of the channel was optimized. First, the pressure drop and flow distribution characteristics of the initial channel model were evaluated using numerical analysis. Also, by the result of analysis and design modification, 4 design parameters of the channel were selected. Second, using the Taguchi optimal method, the cooling channel was optimized. In the method, nine models with different levels of the design parameters were generated and the flow characteristics of each models was estimated. Base on the result, the main effect of the design parameters was founded and optimized model was obtained. For the optimized model, the pressure drop and oil flow rate were about 0.196 bar and 0.207 L/min, respectively. The pressure drop decreased by about 0.3 bar and the oil flow rate to the motor part increased by about 0.2 L/min compared to the initial model.

도시철도 차량 차륜 플랜지의 마모패턴에 관한 연구 (A Study On Wear Pattern of Wheel Flange for Urban Railway Vehicle)

  • 노학락;맹희영;권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.71-77
    • /
    • 2007
  • The surface of railway wheel tread in wheel-rail system can not be free from wear because of various circumstance such as railway condition, maintenance condition, weather condition, characteristics of wheel surface's geometrical shape, and vehicle suspension's structural characteristics etc. Therefore, the research on wear reduction and maintenance method are very important to ensure the safety of railway vehicle, to improve car comfort and to decrease maintenance cost. In this study, the wear rates of railway wheel have been periodically measured in terms of the running distance of Electrical Multiple Unit which have been currently operated and the microstructure transformation of wheel tread using replication method have been performed. The results show that the relations between the flange wear and tread microstructure are depended on running distance and it will supply basic data on wheel maintenance.

  • PDF

차량용 타이어의 마멸손상에 관한 고장사례 연구 (Failure Studies on the Wear Scars of an Automotive Tire)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • 제23권5호
    • /
    • pp.228-233
    • /
    • 2007
  • This paper presents the case studies on the friction related wears of an automotive tire, which is strongly connected to the safety and comfort of a driver during a running of a car. Wear scars of a tire tread are affected by various causes such as an air pressure, a wheel alignment, a driving speed, road conditions, starting and braking habits of a driver. The data were collected from used tires for a replacement at the car service center. Most of the wear problems came from the improper repair and adjustment of revolving components, which cause an unbalanced wear of a tread part of a tire. Thus, the regular checking of a tire radically reduces the wear scars of a tire and may increase a driving safety and a fuel economy of a car and a wear life of a tire.

휠 베어링용 밀봉 시일 설계를 위한 시일 립의 밀착력 예측 (Prediction of the Reaction Force for Seal Lip Design with Wheel Bearing Unit)

  • 김기훈;유영면;임종순;이상훈
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.165-172
    • /
    • 2001
  • Wheel bearing units were almost exclusively used for car front wheel, where the two ball rows are directly side by side with integrated rubber seal. The seal is of important for wheel bearing units due to the adverse environmental conditions with mud and splash water. The seal of wheel bearing units was designed to have geometry with multi lips, which elastic lip contacts and deforms with bearing. The equation of reaction force for deformed lip as cantilever beam was previously used for seal lip design. But it's result was not useful because deflection of the beam differs from lip's. In this study, deformed shape of the lip was assumed to and order function which is more similar to lip deformation and made the equation for reaction force prediction. The Reaction forces from each other equations were compared with results by FEA to prove usefulness of new equation.

  • PDF

조립과정을 고려한 차륜용 베어링의 내부틈새 선정 (Selection of Internal Clearance for Automotive Wheel Bearings Considering an Assembling Procedure)

  • 현준수;안태길;김성근
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.51-57
    • /
    • 2000
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance lift of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, geometry, internal clearance and so on. Under the same geometry and loading conditions, the internal clearance is the most effective parameters on the endurance lift of a bearing. Generally, bearings have the longest lift with a little negative internal clearance. But it is very difficult to measure and modify the internal clearance after a wheel bearing is assembled. In this paper, we analyze the effect of an assembling procedure on the clearance of wheel bearings and suggest a method to determine optimal clearance for automotive wheel bearings by selecting initial bearing clearance.

  • PDF

근사함수를 이용한 스틸휠의 디스크 홀의 최적화 (Optimal Design of the Steel Wheel's Disc Hole Using Approximation Function)

  • 임오강;유완석;김우현;조재승
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.105-111
    • /
    • 2003
  • 승용차의 휠은 타이어와 차체 무게를 지지하며, 회전력과 정지력을 노면으로 전달한다. 휠의 경량화는 차량의 연료효율에 효과적이므로, 스틸휠이 무게를 최소화하도록 디스크 홀이 형상을 최적화 하였다. 설계모델은 Pro/ENGINEER를 사용하여 설정하고, 설계모델의 해석은 ANSYS를 이용하였다. 범용 소프트웨어간의 직접적인 자료의 전달이 어려우므로 두 프로그램을 병합 사용하기 위해, 반응표면법을 이용한 근사함수를 구하였다. 5수준의 요인배치법의 실험값을 사용하여 최대응력과 최대 변위를 추출하였다. 초기 모델은 14인치 승용차용 스틸휠을 사용하였고, 디스크 홀의 폭을 설계변수로 선택하였다. 순차이차계획법과 활성화제약조건을 사용하는 PLBA(Pahenichny-Lim-Belegundu-Arora) 알고르즘을 이용하여 최적해를 구하였다.

최고속도 200km/h급 중국 1등 객차의 동특성 해석연구 (A Study on Dynamic Characteristics of the 200km1h Chinese First Class Passenger Car)

  • 이강운
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.321-328
    • /
    • 1998
  • In this study we have studied running stability, safety and passenger comfort of the Chinese first class passenger car made by our company and CCRW. A fine analysis model of 72 d.o.f. was constructed for simulating dynamic behavior of the car on straight and curved tracks having irregularity configurations. We have calculated the various characteristic values such as critical speed, lateral force, derailment ratio, wheel unloading ratio and passenger comfort index, then evaluated them by comparing with reference values.

  • PDF