• Title/Summary/Keyword: Wheel for Car

Search Result 267, Processing Time 0.028 seconds

An Experimental Study on Vibration Characteristics of AI-alloy Wheel for Passenger Car (자동차용 알루미늄 합금 휠의 진동특성에 관한 실험적 연구)

  • Kim, Byoung-Sam;Chi, Chang-Hun;Mun, Sang-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.623-628
    • /
    • 2001
  • The styling of passenger car wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Vibration characteristics of a passenger car wheel play an important role to judge a ride comfortability and quality for a passenger car. In this paper, the vibration characteristics of a AI-alloy and steel wheel for passenger car are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.

  • PDF

A Study on Cooling Performance of In-wheel Motor for Green Car (그린카용 인휠 모터의 냉각 성능에 관한 연구)

  • Jung, Jung-Hun;Kim, Sung-Chul;Hong, Jung-Pyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The in-wheel motor used in green car was designed and constructed for an electric direct-drive traction system. It is difficult to connect cooling water piping because the in-wheel motor is located within the wheel structure. In the air cooling structure for the in-wheel motor, a outer surface on the housing is provided with cooling grooves to increase the heat transfer area. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the in-wheel motor under the effects of motor speed and heat generation. In order to check the problem of heat release, the analysis has been performed using conjugate heat transfer (conduction and convection). As a result, flow fields and temperature distribution inside the in-wheel motor were obtained for base speed condition (1250 rpm) and maximum speed condition (5000 rpm). Also, the thermo-flow characteristics analysis of in-wheel motor for vehicles was performed in consideration of ram air effect. Therefore, we checked the feasibility of the air cooling for the housing geometry having cooling grooves and investigated the cooling performance enhancement.

A Study on Brake Gain Adaptive Wheel Slip Control (브레이크 게인 적응 휠 슬립 제어에 관한 연구)

  • Jo, J.S.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2007
  • The brake gain adaptive wheel slip controller for a vehicle is designed in this paper. The brake gain from braking pressure to braking torque defined by friction coefficient, friction area and effective friction radius is estimated by the adaptive law based on the wheel slip dynamics. And the wheel slip controller is designed based on the estimated brake gain. The robustness of the designed controller is analyzed using Lyapunov function and the convergence of brake gain is verified. Proposed wheel slip controller is verified via CarSim simulation with two kinds of desired wheel slip ratio.

  • PDF

A Study on the Optimum Control of Wheel for Coach Car (객차용 차륜 최적관리 연구)

  • 이찬우;허현무
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.404-410
    • /
    • 2002
  • In this study, we have analyzed the optimum control of wheel for coach car in maintenance process to grasp the problem relating to this coach's wheel exchanged. So, these problems brought about decrement maintenance cost. This study were deliberated to solve problems concerning maintenance process of wheel exchanged and wheel specification in rolling stock workshops of KNR. Here, we describe some results.

  • PDF

A Study on the Design of Wheel for Car on Human Sensibility Analysis (자동차 휠 디자인에 대한 감성 분석 연구)

  • 김희연;나윤선;신강원;윤형건
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.371-380
    • /
    • 2003
  • Modern consumers expect the goods which is sewed more sensitive and emotional satisfaction. It is necessary to apply the knowledge of sensibility analysis to the design of car. The design of wheel for car is regarded as important because consumers want to have unique cars and spend on decorating their cars. This study is to understand the image of consumer's idea about the design of wheel for far through the sensibility analysis that is understood from a part of new design way. According to consumers'needs and emotion, the images of 'harmonious', 'fresh' and 'strong' are representative for the design of wheel for car. The wheel of spoke type stands for the image of 'harmonious', the wheel of mesh type for the image of 'fresh' and the wheel of dish type for the image of 'strong'. Therefore, the emotional image that consumers have of the product is extracted by the sensibility Analysis. In turn, the suggestion of a design direction that satisfies the consumers is possible.

  • PDF

Measuring and analyzing the hardness of wheel tread based on the mileage of freight car (화차 주행거리에 따른 차륜답면 경도측정 분석)

  • So, Jin-Sub;Lim, Jae-Kyun;Lee, Dae-Gyu;Nahm, Gi-Don;Kim, Ju-Won;Choi, Hyeong-Su;Whang, Sang-Ju;Yun, Cha-Jung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1642-1645
    • /
    • 2008
  • It is said that the effect in wheels of freight car varies with the type of freight, the condition of operation, the braking device, and the type of bogie. The hardness of open wagon, gondola car, propylene car, covered freight car, container car and hopper car has been measured according to the mileage through this research. As a result, the wheel with more mileages after shaving off the wheel tread has a higher hardness than the others in the case of same type of car.

  • PDF

A Study on an Omni-directional Mobile Robot for Moving a Double-parked Car (이중 주차된 차량 이동용 전방향 이동 로봇에 대한 연구)

  • Yoon, Kyung Su;Lee, Myung Sub;Sung, Yount Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.440-447
    • /
    • 2018
  • Double parking is very common in a parking lot where there is not sufficient parking space. When we double-park a car, we leave transmission gear in neutral position and release the emergency brake so that the double-parked car can be moved just by pushing it. However, moving a double-parked car by pushing is very hard and dangerous especially for the old and the weak. So, we propose an omni-directional mobile robot for moving a double-parked car easily and safely. The developed omni-directional mobile robot moves a double-parked car by rotating a wheel of a double-parked car. It has two specially designed rollers to rotate a wheel of a double-parked car and is designed so that the height of the robot is very low to be able to enter beneath a double-parked car. It can move a double-parked car safely by detecting obstacles in the way with five ultrasonic sensors. We verified by several experiments that the developed omni-directional mobile robot can be used to move a double-parked car easily and safely.

Improvement of Steering-Wheel Idle Vibration in a Passenger Car using Design Sensitivity Analysis (설계민감도 해석을 이용한 승용차의 스티어링 휠 아이들 진동 개선)

  • 이두호;김명업
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.129-137
    • /
    • 2000
  • In the prototype stage of a car developing program, the efficiency of trouble shooting is an important factor to be considered. Structural modifications by the design sensitivity analysis are applied to a steering wheel system for improving the idle vibration of the prototype passenger car. For the design sensitivity analysis, the experimental modal analysis for the steering system attached to a body-in-white is fulfilled and the modal parameters extracted from the experimental data are used to predict the effect of structural modification, The design sensitivity results rank the locations to be reinforced in terms of frequency variation. The modification of steering system according to the sensitivity analysis results shifted the resonant frequency of the system effectively. In addition, the idle test of the car after the structural modifications f steering system shows that the proposed method can reduce vibration of the steering wheel efficiently.

  • PDF

Sliding Mode Control for Pneumatic Active Suspension Systems of a One-wheel Car Model

  • Yoshimura, Toshio;Kimura, Ryota
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1152-1157
    • /
    • 2005
  • This paper is concerned with the construction of an improved sliding mode control for the active suspension system of a one-wheel car model subject to the excitation from a road profile. The active control is composed of the equivalent and the switching controls where an improved sliding surface is proposed. The active control force is generated by operating a pneumatic actuator due to the control signal that constructed by measuring the state variables of the car model and by estimating the excitation from the road profile using the VSS observer. The experimental result indicates that the proposed active suspension system is relatively effective in the vibration suppression of the car model.

  • PDF