• 제목/요약/키워드: Wheel bearing failure diagnostic module

검색결과 2건 처리시간 0.015초

차량용 휠 베어링의 결함 예측을 위한 센서 모듈 및 진단 연구 (A Study on Sensor Module and Diagnosis of Automobile Wheel Bearing Failure Prediction)

  • 황재용;설예인
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.47-53
    • /
    • 2020
  • 최근 모니터링 및 예측 시스템을 이용하여 사전에 결함을 발견하고 이를 경고하는 시스템이 활발히 연구되고 있다. 차량 안전 관리에 있어서도 예측 결함 분석 기술을 적용하여 자동차 휠 베어링의 고장 유무 및 고장 유형을 조기에 경고하는 시스템이 필요하다. 본 논문에서는 휠 베어링과 결합 된 센서 모듈과 각 센서 모듈에서 차량 가속 정보 및 진동 정보를 수집, 저장 및 분석하는 진단 시스템을 제시하였다. 제안된 센서 모듈은 저비용으로 차량의 휠 베어링 상태를 모니터링하며, 이렇게 수집된 데이터를 활용하여 진단 및 고장 예측 기능을 수행하는 방안을 연구하였다. 개발된 센서 모듈과 예측 분석 시스템은 가진 테스트 장비 및 실제 차량을 이용하여 테스트하고 그 유효성을 평가하였다.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.1-8
    • /
    • 2023
  • 자동차의 주요 부품인 휠 베어링에 결함이 생기면 교통사고등 문제를 발생시켜 이를 해결하기 위해 빅데이터를 수집해서 예측진단 및 관리 기술을 통한 휠 베어링의 고장 유무 및 고장 유형을 조기에 알려 주는 알고리즘과 모니터링 시스템 개발이 필요하다. 본 논문에서는 이러한 지능형 휠 허브 베어링 정비 시스템 구현을 위해 신뢰성 및 건전성에 대한 모니터링용 센서 및 예측 진단하는 알고리즘이 탑재된 임베디드 시스템을 개발하였다. 사용된 알고리즘은 휠 베어링에 설치된 가속도 센서로부터 진동 신호를 취득하고 이를 신호 처리기법, 결함주파수 분석, 건전성 특징 인자정의 등의 과정을 빅데이터 기술을 통해 고장을 예측하고 진단할 수 있다. 구현된 알고리즘은 진동 주파수 성분들은 최소화하고 휠 베어링에서 발생하는 진동 성분을 극대화할 수 있는 안정 신호 추출 알고리즘을 적용하고, 필터를 활용한 노이즈 제거에서는 인공지능 기반의 건전성 추출 알고리즘을 적용하였으며, FFT를 통한 결함 주파수를 분석하여 고장 특성인자 추출을 통한 고장을 진단하였다. 본 시스템의 성능 목표는 12,800ODR 이상으로 시험 결과를 통해 목표치를 만족하였다.