• 제목/요약/키워드: Wheel Pressure

검색결과 260건 처리시간 0.03초

곡선부 주행시 궤간 가변 잠금부품들의 피로해석 (Fatigue Analysis of Locking Parts in the Gauge - Adjustable Wheel Set System in the Curved Track)

  • 김철수;안승호;정광우;장승호;김정규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1-6
    • /
    • 2006
  • The gauge - adjustable wheelset system in the transcontinental railway represents a more effective way in comparison with other techniques for overcoming difference in track gauges. Moreover, freight trains having the gauge - adjustable wheelsets will be run various curved tracks of Eurasian railroad network such as TKT, TCR and TSR. Therefore, to assure the safety of the gauge - adjustable adjustment wheelset system, it is necessary to evaluate durability of locking parts in the system during freight trains' service in the curved track. In this study, it was performed to estimate fatigue life of locking parts under lateral wheel pressure by using durability simulator.

  • PDF

도시철도 차량 주행시 곡선스킬소음 실험 및 고찰 (Field Measurements and Review of the Curve Squeal Noise of Urban Railways)

  • 김재철;김관주;이준헌;김지용
    • 한국철도학회논문집
    • /
    • 제20권2호
    • /
    • pp.165-172
    • /
    • 2017
  • 도심을 지나는 철도 궤도는 급격한 곡선 구간이 존재하며, 철도차량이 곡선부를 주행하며 발생시키는 높은 주파수의 스킬소음은 곡선부 인근에 소음 민원을 야기하고, 해당 구간 궤도의 마모를 과도하게 발생시킨다. 본 논문에서는 대표적 비선형, 과도 특성인 스킬소음의 현상을 정확하게 파악하기 위해서 실차를 대상으로 곡선부 스킬 소음실험을 수행하였다. 특정 대차내 4 차륜을 대상으로 스킬소음의 음압의 크기, 주파수 특성, 주행 속도 변화에 따른 영향, 차륜의 진동응답특성과 스킬소음의 연관관계를 파악하였다. 동시에 차륜과 레일의 접촉 위치의 변화를 촬영한 영상을 분석하여 스킬소음 발생시 차륜의 레일에 대한 상대적 움직임에 대한 현상을 살펴보았다. 철도 차량 곡선 주행시 스킬소음은 내측 전륜에서 가장 크게 발생하며, 이는 차륜의 횡방향 진동 응답 특성과 관련이 있다고 생각된다. 이 발생 스킬소음의 크기는 차량 속도 증가와는 직접적인 관련이 없음을 알 수 있었다.

레일 용접부의 경도와 마멸특성에 관한 실험적 연구 (Experimental Study on Hardness and Wear Characteristics of Welded Rails)

  • 김청균
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.431-437
    • /
    • 2000
  • In this paper, thermite and gas pressure weldings have been used to join rails in-track and analyzed as functions of hardness and wear characteristics. The wear rate of thermite welded rail is low compared with that of gas pressure welded rail, which is tested in a pin-on-disk wear tester. The hardness of thermite welded materials is relatively high and narrowly distributed between three zones; welded part, thermally affected zone, and base matrix. Wear of a welded rail may be a major factor in railroad maintenance costs and failures at the rail-rail huh joint.

솔리드모델과 2D 연성모델을 사용한 브레이크 디스크의 열해석 (The Thermal Analysis of Brake Disc using the Solid Model and 2D Coupled Model)

  • 강상욱;김창진;이대희;김흥섭
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.93-100
    • /
    • 2003
  • This paper describes the thermoelastic instability arising from friction heat generation in braking and proposes the finite element methods to predict the variation of temperature and thermal deformation. In a conventional disc brake analysis, heat generation is only related with wheel speed and friction material and the interface pressure between disc and pad is assumed constant. But under dynamic braking conditions, the frictional heat causes the thermoelastic distortion that leads to more concentrated contact pressure distribution and hence more and more non-uniform temperature. In this paper, to complete the solution of the thermomechanically coupled problem, the linear relation model between pressure and temperature is proposed and demonstrated in examples of a simple two dimensional contact problem. And the two dimensional model has been extended to an annular three dimensional disc model in order to consider more realistic geometry and to provide a more accurate critical speed for automotive brake systems.

ABS 출구 밸브의 동특성 향상에 관한 연구 (A Study on the Improvement of Dynamic Characteristics of ABS Outlet Valve)

  • 김병우;송창섭;이용주
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.133-142
    • /
    • 2002
  • To improve the hydraulic control performance of ABS, it is necessary to establish an efficient control algorithm. And also it is necessary to ova]Hate a hydraulic modulator with solenoid valve quantitatively. In this paper, FEM and permeance method are used to analyze dynamic characteristics of outlet valve. In return, mathmatical modeling of a hydraulic modulator and operating pressure is presented, and the model parameters of an outlet valve are moving plunger, spring constant and orifice diameter. This study shows the way to improve the dynamic characteristic of an ABS outlet valve heavily depending on operating pressure. It is recommended that operating pressure should be justified at the first step toward the design to get the optimal design of an outlet valve.

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

회전식 폐열회수 환기유닛의 공기누설 및 전열특성에 관한 실험적 연구 (An Experimental Study on Air Leakage and Heat Transfer Characteristics of a Rotary-type Heat Recovery Ventilator)

  • 한화택;김민규
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1197-1203
    • /
    • 2004
  • This study investigates the air leakage and heat transfer characteristics of a rotary-type air-to-air heat exchanger with a fiber polyester matrix. The leakage airflow rate is measured using a tracer gas method for various ventilation rates and rotational speeds of the matrix wheel. A correlation equation for air leakage is obtained by combining the pressure leakage and the carryover leakage. The pressure leakage is observed to be a function of ventilation airflow rate only, and the carryover leakage is found to be a linear function of rotational speed. The real efficiency of the heat exchanger can be obtained from its apparent efficiencies by taking into account the air leakage ratio. As the ventilation rate increases, the heat recovery efficiency decreases. As the rotational speed of the matrix increases, the efficiency increases initially but reaches a constant value for the rotational speeds over 10 rpm.

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

Prediction and analysis of structural noise of a box girder using hybrid FE-SEA method

  • Luo, Wen-jun;Zhang, Zi-zheng;Wu, Bao-you;Xu, Chang-jie;Yang, Peng-qi
    • Structural Engineering and Mechanics
    • /
    • 제75권4호
    • /
    • pp.507-518
    • /
    • 2020
  • With the rapid development of rail transit, rail transit noise needs to be paid more and more attention. In order to accurately and effectively analyze the characteristics of low-frequency noise, a prediction model of vibration of box girder was established based on the hybrid FE-SEA method. When the train speed is 140 km/h, 200 km/h and 250 km/h, the vibration and noise of the box girder induced by the vertical wheel-rail interaction in the frequency range of 20-500 Hz are analyzed. Detailed analysis of the energy level, sound pressure contribution, modal analysis and vibration loss power of each slab at the operating speed of 140 km /h. The results show that: (1) When the train runs at a speed of 140km/h, the roof contributes more to the sound pressure at the far sound field point. Analyzing the frequency range from 20 to 500 Hz: The top plate plays a very important role in controlling sound pressure, contributing up to 70% of the sound pressure at peak frequencies. (2) When the train is traveling at various speeds, the maximum amplitude of structural vibration and noise generated by the viaduct occurs at 50 Hz. The vibration acceleration of the box beam at the far field point and near field point is mainly concentrated in the frequency range of 31.5-100 Hz, which is consistent with the dominant frequency band of wheel-rail force. Therefore, the main frequency of reducing the vibration and noise of the box beam is 31.5-100 Hz. (3) The vibration energy level and sound pressure level of the box bridge at different speeds are basically the same. The laws of vibration energy and sound pressure follow the rules below: web