• 제목/요약/키워드: Wheel Moment

검색결과 115건 처리시간 0.025초

일래스토메릭 부싱의 회전방향 모두 비선형 점탄성 모델연구 (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Torsional Mode)

  • 이성범
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.194-200
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. For axial motion case, the relation between the force applied to the shaft and their relative displacement was considered. In this paper, the relation between the moment applied to the shaft and their relative deformation(angle of rotation) is considered for the torsional motion case. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the moment relaxation function of the bushing. Solutions also allow for comparison between the exact moment-deformation behavior and that predicted the proposed model. It is shown that the predictions of the proposed moment-deformation relation are in very good agreement with the exact results.

  • PDF

브레이크 슬립 제어에 기초한 차량 능동 요모멘트 제어 알고리즘의 개발 (Development of Active Yaw Moment Control Algorithm Based on Brake Slip Control)

  • 윤원영;송재복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.487-492
    • /
    • 2000
  • Yaw moment control algorithm for improving stability of a vehicle in cornering is presented in this paper. A change of the yaw moment according to an increment in brake ship at each wheel is examined and reflected in the control algorithm. This control algorithm computes the target yaw velocity as the vehicle motion desired by the driver for directional stability control in cornering and it makes the actual yaw velocity follow the target one. The yaw moment control was achieved by brake slip control and simple brake slip control logic was introduced in this paper.

  • PDF

최적 타이어 힘 분배 방법을 통한 전기차의 독립 6WD/6WS에 관한 연구 (A Study on an Independent 6WD/6WS of Electric Vehicle using Optimum Tire Force Distribution)

  • 김동형;김창준;김영렬;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.632-638
    • /
    • 2010
  • This paper presents an optimum tire force distribution method for 6WD/6WS(6-Wheel-Drive and 6-Wheel-Steering) electric vehicles. Using an independent steering and driving system, the performance of 6WD/6WS vehicles can be improved, as, for example, with respect to their maneuverability under low speed and their stability at high speed. Therefore, there should be a control strategy for finding the optimum tire forces that satisfy the driver's command and minimize energy consumption. From the driver's commands (steering angle and accelerator/brake pedal stroke), the desired yaw moment, the desired lateral force, and the desired longitudinal force were obtained. These three values were distributed to each wheel as the torque and the steering angle, based on the optimum tire force distribution method. The optimum tire force distribution method finds the longitudinal/lateral tire forces of each wheel that minimize the cost function, which is the sum of the normalized tire forces. Next, the longitudinal/lateral tire forces of each wheel are converted into the reference torque inputs and the steering wheel angle inputs. The proposed method was tested through a simulation, and its effectiveness was verified.

소형 터보과급기 로터의 관성모멘트 측정 (Measurement of Moment of Inertia of a Small Turbocharger Rotor)

  • 정진은;전세훈;이상운
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.711-717
    • /
    • 2017
  • 본 논문은 엔진 다운사이징의 관점에서 널리 사용되는 터보과급기 로터의 관성모멘트 측정에 관한 연구이다. Trifilar 방법을 이용하여 관성모멘트를 측정하기 위한 장치를 설계 제작한 후, 장치를 검증하기 위하여 교정로터의 관성모멘트를 측정하였다. 측정의 변동계수는 0.43%, CAD 도면의 관성모멘트와 비교하여 0.75% 오차를 보여 개발된 측정장치가 로터의 관성모멘트 측정에 적합함을 확인하였다. 소형 터보과급기의 터빈 로터와 압축기 휠 각 2개에 대한 관성모멘트 측정을 수행하여 1.0% 미만의 변동계수를 보여 정밀한 측정이 가능함을 보였다. 그러나 CAD 도면의 관성모멘트와 비교한 오차는 터빈 로터는 2.76%와 1.30%로 양호하였으나, 압축기 휠의 경우 27.6%와 24.4%로 상당히 크게 나타났다. 연구에 사용된 압축기 휠은 질량이 소형으로 상대적으로 공기저항이 크고 정확한 주기 측정의 어려움으로 큰 오차를 보였다. 따라서 터빈 로터와 압축기 휠을 결합한 상태에서 측정한 값에서 터빈 로터의 관성모멘트를 빼는 간접 방법으로 측정을 수행하였다. 이때 압축기 휠의 관성모멘트 측정에서 1.2% 미만의 변동계수를 보이고 오차는 5.68%, 7.88%의 값을 보였다.

차량 선회 안정성을 위한 휠 슬립 제어시스템 개발 (Development of a Wheel Slip Control System for Vehicle Cornering Stability)

  • 홍대건;허건수;황인용;선우명호
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 상하 이송 기구 설계에 관한 연구(파트 1) (A Study on the Design of Upward and Downward Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 1))

  • 박후명;강진갑;이용중;하만경
    • 한국기계가공학회지
    • /
    • 제7권2호
    • /
    • pp.45-51
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. In order to perform this objective, a upward and downward traverse unit in which a unit that consists of a motor and reducer, chain and sprocket wheel, and upper and lower base employed in an automatic object changer unit performs sliding contact motion in a frame was designed. To achieve this design, constraint conditions for the upward and downward traverse unit first designed. Then, an operation mechanism was designed and that was introduced as a sum of kinetic energy for the sprocket wheel and upper and lower base based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. In addition, The work required to rotate the converted upward and downward traverse unit in the side of the reducer by one revolution can be calculated using the sum of work that is required in the sprocket wheel and upper and lower base that is a part of the upward and downward traverse unit. Furthermore, the converted equation of motion in the side of the motor can be introduced using the equation of motion using the converted upward and downward traverse unit in the side of the motor. Then, Then, a proper motor can be determined using predetermined specifications employed in the motor and several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. Also, a design of a horizontal traverse unit that performs sliding motion on a upward and downward traverse unit and simulation that verifies the results of this design are required as a future study.

  • PDF

후륜 조향각 결정을 통한 통합 섀시 제어기의 성능 향상 (Performance Improvement of Integrated Chassis Control with Determination of Rear Wheel Steering Angle)

  • 임성진
    • 대한기계학회논문집A
    • /
    • 제41권2호
    • /
    • pp.111-119
    • /
    • 2017
  • 본 논문은 자세 제어 장치(ESC)와 후륜 조향 장치(RWS)를 장착한 통합 섀시 제어기의 성능을 향상시키기 위해 후륜 조향각을 결정하는 방법을 제안한다. 차량을 안정화시키기 위해 필요한 제어 요 모멘트는 자세 제어 장치와 후륜 조향 장치를 이용하여 만들어진다. 각 장치의 타이어 힘을 결정하기 위해 의사역행렬 제어할당 방법을 적용한다. 제어기의 성능을 향상시키기 위해 후륜 조향 장치의 조향각을 결정하는 데에 네 가지 방법을 적용한다. 차량 시뮬레이션 패키지인 CarSim에서 시뮬레이션을 수행하여 제안된 방법들이 통합 섀시 제어기의 성능을 향상시킬 수 있음을 검증한다.

공중물체의 자세제어 및 안정화를 위한 밸런스 빔 제어기(신건설장비) 구현 (An Implementation of Balance Beam Controller(New Construction Machinery) for an Attitude Control and Stabilization of an Unstructured Object)

  • 이건영;김진오
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, the balance beam control subsystem, new type of construction machinery using the mechanism of CMG (control moment gyro), for the attitude control of an unstructured object such as a beam carried by a tower crane, is designed and implemented. The balance beam controller consists of a wheel spinning at high speed and an outer gimbal for controlling the attitude of the wheel. Two motors, one for the wheel and the other for the gimbal, are used. Applying force to the spin axis of the wheel, as an input of the system, leads the torque about the axis because of the gyro effects. This torque is used to control the attitude of the unstructured object in this study. For the stabilizer function, in addition, holding the load at the current position, the attitude of the wheel is freed by cutting the power applied to the gimbal motor of the balance beam controller, which result in the braking force to stop the load by gyro effect. The works presented here include the mechanical system of the balance beam controller, the remote controller, the servo controller and the control software for the system. We also present experimental results to show that the system we proposed is useful as a new construction machinery which can control the attitude of the beam hanging from a tower crane.

CAE를 이용한 자동차용 휠(wheel)의 피로수명 예측기법 연구 (The Study on the Fatigue Life Prediction on Wheels through CAE)

  • 김만섭;고길주;김정헌;양창근;김관묵
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.117-122
    • /
    • 2004
  • The fatigue life in wheels was predicted by simulating the experimental method using Finite-Element analysis. Based on a high frequency fatigue property, calculations of the stresses in wheels were performed by simulating the rotating bending fatigue test. Wheels made of an aluminum alloy(A356.2) were tested using a bending fatigue tester. Results from bending fatigue test showed a linear correlation between bending moment and stress amplitude. Consequently, Finite-Element calculations were performed by a linear analysis. In order to find stress-cycles curves, spoke parts of wheel were tested using a rotary bending fatigue tester. Also, highly accurate Finite-Element analysis requires regression lines and confidence intervals from these results. In conclusion, if the fatigue data related to the material and manufacturing procedure are reliable, the prediction on fatigue lift in wheels can be carried out with high accuracy.

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권4호
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.