• 제목/요약/키워드: Wheel Forging

검색결과 25건 처리시간 0.021초

대형 압축기 휠의 열간단조 공정설계 (Hot Forging Design for a Large Scale Compressor Wheel)

  • 임정숙;염종택;김현규;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.47-50
    • /
    • 2003
  • Hot-forging Process and die design was made for a large-scale compressor wheel of Ti-6Al-4V alloy with 2-D FE analysis. The design integrated the geometry-controlled approach and dynamic materials modelling(DMM). In order to obtain the processing contour map of Ti-6Al-4V alloy based on DMM, compression tests were carried out in the temperature range of 915$^{\circ}C$ to 1015$^{\circ}C$ and the strain range of 10$\^$-3/s$\^$-1/ to 10s$\^$-1/. In the die design of the compressor wheel using the rigid-plastic FE analysis, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

  • PDF

상용차용 중공형 휠 너트 렌치의 냉간단조 공정 개발 (Development of Cold Forging Process of Hollow-type Wheel Nut Wrench for Commercial Vehicles)

  • 김홍석;윤재웅
    • 소성∙가공
    • /
    • 제21권8호
    • /
    • pp.493-498
    • /
    • 2012
  • A wheel nut wrench is one of the hand tools used to loosen and tighten lug nuts on automobile wheels and it has generally a solid-type geometry for commercial vehicles. However, the solid-type wheel nut wrenches manufactured by hot forging processes exhibit several drawbacks such as heavy weight and rough surface finish. Thus, many efforts have been devoted to change the part geometry and improve the manufacturing process. For this purpose, the weight of the final product can be reduced drastically using a hollow tube as the initial stock, which can be manufactured by the more economical manufacturing process of cold forging. In this study, the cold forging of a hollow-type wheel nut wrench for commercial vehicles was designed based on the results of fundamental experiments and CAE analyses using the commercial finite element code DEFORM-3D. In addition, cold forging experiments were conducted on a special-purpose forming machine for hollow wheel nut wrenches in order to validate the designed process sequence. As results, it was found that the final products with a weight reduction of 39% and better surface appearance can be manufactured without any defect with the newly designed cold forging process.

선박용 과급기 타이타늄합금 압축기휠의 열간단조 공정설계 (Hot Forging Design of Titanium Compressor Wheel for a Marine Turbocharger)

  • 염종택;나영상;임정숙;김정한;홍재근;박노광
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.354-360
    • /
    • 2009
  • Hot-forging process and die design were made for a large-scale compressor wheel of Ti-6Al-4V alloy by using the results of 2-D FEM simulation. The design integrated the geometry-controlled approach and the processing contour map based on the dynamic materials model and the flow stability criteria. In order to obtain the processing contour map of Ti-6Al-4V alloy, compression tests were carried out in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-1}$ to $10s^{-1}$. In the die design of the compressor wheel using the rigid-plastic FEM simulation, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

차량용 Wheel Nut 소재의 보론강적용을 위한 단조공정에 관한 연구 (Study of a Forging Process for the Application of Boron Steel for Automotive Wheel Nut Material)

  • 이권수;안용식
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.41-47
    • /
    • 2017
  • Boron steel (51B20) was cold forged using by new designed dies to apply for automotive aluminum wheel nut. The formability and mechanical properties of boron steel were compared with carbon steel(S45C) which has been used up to date for the wheel nut material. The formability was investigated on the dies designed with various types of punch nose using by FEM. The metal flow and compressive stress on the dies during cold forging were investigated and compared each other. The forging process with a new designed die showed the improved metal flow with a reduced forging load which resulted in the significant increase of the die life. It was recommended that the carbon steel for automotive wheel nut material could be substituted by the boron steel.

6061 알루미늄합금 휠 단조공정의 해석 (An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel)

  • 김영훈;유태곤;황병복
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF

AA6061 휠 성형공정의 열-점소성 유한요소해석 (Analysis of AA6061 Wheel Forging Processes by the Thermo-Viscoplastic Finite Element Method)

  • 김영훈;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.11-16
    • /
    • 1997
  • In this study, the finite element analysis of AA6061 wheel forging processes over hot working range is performed and a thermo-viscoplasticity theory applicable to hot forging is applied for simulation. Aluminum alloy has frequently been utilized to manufacture automobile and aircraft parts due to its various advantages such as lightness, good forgeability, and wear resistance. Several forging conditions are applied to the simulation, such as die speeds, rib thicknesses, and depth of die cavity. The effectiveness of the simulation results is summarized in terms of metal flow, strain distributions, temperature distributions, forging load, which are essential to over all process design.

  • PDF

통계적 기법을 활용한 플랜지형 휠베어링의 열간단조 공정 최적화 (Optimization of Hot Forging Process of Flange Type Wheel Bearings by Statistical Technique)

  • 이재성;문호근;송복한;허보영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2006
  • Due to the shape of spindle with small diameter and heavy section, rapid cooling is difficult. It is difficult to fabricate the tapered wheel bearings with fine microstructure. Thus, their mechanical characteristics, such as yield strength and fatigue resistance, decrease. Producing the tapered wheel bearings with good workability during orbital forming after hot forging, hot forging process with several process parameters was optimized by means of statistical technique of Six-Sigma scheme. As a result, the lower heating temperature is, the lower the hardness and yield strength of forgings are. Also, the faster conveyer velocity is, the lower the hardness and yield strength of forgings are. To avoid therefore occurrence of the surface rupture during orbital forming, the heating temperature should be controlled as low as possible and the conveyer velocity should be controlled as fast as possible.

  • PDF

자동차 휠 너트용 냉간단조 금형에서 인서트링과 보강링의 최적 설계에 관한 연구 (Study on the Optimum Design of the Insert Ring and Shrunk Ring of the Cold Forging Die for an Automotive Wheel Nut)

  • 이권수;김기엽;안용식
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.165-170
    • /
    • 2018
  • In order to increase the lifetimes of cold forging dies, insert rings are generally used. In this study, an insert ring and shrunk ring of the flange upsetting die were designed for the cold forging of an automotive wheel nut. The Stress distribution occurring in the die during forging was simulated using a commercial finite element analyzing program. The effects of the fitting interference and inclined angle of the insert ring on the compressive stress of the die inside were also investigated. The simulated data were compared with the real lifetimes of the forging dies. The maximum compressive stress acting on the edge of a forging die should have the most influence on die lifetime, an idea which could help develop the die design with the longest lifetime. The design of the most optimal forging die with the longest lifetime is made possible by analyzing the maximum inner pressure and principal stress between the shrunk ring and insert ring.

자동차 휠용 6061 Al합금의 단조 및 T6 열처리 전후의 미세조직과 기계적 특성 평가 (Evaluation of Mechanical Property and Microstructure of Forged and T6-treated 6061 Aluminum Alloy Wheel)

  • 이지혜;정헌수;염종택;김정한;박노광;이용태;이동근
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.354-359
    • /
    • 2007
  • Effects of forging and mechanical properties of 6061 aluminum alloy wheel for automobiles were investigated in the present study. Microstructural and tensile characteristics of automobile wheel after hot forging process using dynamic screw press were analyzed to evaluate effect of metal flow on mechanical properties. The results showed advanced mechanical properties of 6061 alloy wheel because of $Mg_2Si$ precipitation by T6, elongated grain by forging, and work hardening by dense metal flow, etc. Hot compression tests were conducted in order to characterize high temperature compression deformation behaviors and microstructural variation in the range of $300{\sim}450^{\circ}C$, in the strain rate range of $10^{-3}{\sim}10^1\;sec^{-1}$. As strain rate increased, maximum compression stress increased but it was shown the reverse linear relation between temperature and maximum stress irrelevant to strain rate variation. On the other hand, temperature and yield stress didn't have any linear relation and its relation showed big deviation by a function of strain rate and test temperature.