• 제목/요약/키워드: Wheel/rail contact

검색결과 224건 처리시간 0.022초

축소 점착시험기를 이용한 휠/레일의 점착계수 추정에 관한 연구 (Estimation Study on the Wheel/Rail Adhesion Coefficient of Railway Vehicles Using the Scaled Adhesion Tester)

  • 김민수;김경희;권석진
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.603-609
    • /
    • 2015
  • Railway vehicles driven by wheels obtain force required for propulsion and braking by adhesive force between wheels and rails, this adhesive force is determined by multiplying adhesion coefficient of the friction surface by the applied axle load. Because the adhesion coefficient has a peak at certain slip velocity, it is important to determine the maximum values of the friction coefficient on the contact area. But this adhesive phenomenon is not clearly examined or analyzed. Thus we have developed new test procedure using the scaled adhesion test-bench for analyzing of the adhesion coefficient between wheel and rail. This adhesion test equipment is an experimental device that contacts mutually with twin disc which are equivalent to wheels and rails of railway vehicles.

철도차량탈선에 영향을 미치는 윤축의 기계적 인자에 관한 연구 (Study on Mechanical Parameters of a Wheelset Influencing Derailment of Rolling Stock)

  • 오현석;구정서
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1207-1218
    • /
    • 2013
  • 나달식 등 한쪽 차륜과 레일의 접촉력에 기반한 기존 탈선계수식으로는 열차 주행 시 여러 가지 요인에 의해 발생하는 다양한 유형의 탈선을 이론적으로 예측하기 어렵다. 이를 보완하기 위하여 개발된 단일윤축 탈선계수는 타고오름탈선, 미끄러져오름 탈선, 전복탈선 및 이들의 복합유형 탈선을 잘 예측할 수 있고, 접촉부 마찰계수, 플렌지 각 등 기존의 탈선계수식에서 고려하던 기계적 인자뿐만 아니라 윤중감소/증가, 궤간, 차륜직경, 축상 베어링 위치 등 다양한 탈선영향인자들도 고려할 수 있다. 본 논문에서는 단일윤축 탈선계수식으로 이러한 다양한 탈선영향인자들을 고려하여 기존의 나달식, 바인스톡 식 등으로 구할 수 없었던 탈선현상을 분석한다. 마지막으로 동역학 시뮬레이션을 이용하여 이론적인 단일윤축 탈선계수식 결과들의 타당성을 입증한다.

축소형 철도차량의 설계변수에 따른 횡진동 해석 (Lateral Vibration Analysis for Design Parameter of the Scale Model of a Railway Vehicle)

  • 이승일;최연선
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1231-1237
    • /
    • 2006
  • The vibration of a running railway vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a of the scale model of a railway vehicle. Also, the effects on the car-body, bogie and wheelset were examined for the weight and the stiffness of the second suspension system. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension system increase. And the lateral vibration of the bogie increases as the mass ratio between car-body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

A Study on the Running Safety of F26 Turnout and Vehicle Model

  • Kim, Sung Jong;Eom, Beom-Gyu;Lee, Hi Sung
    • International Journal of Railway
    • /
    • 제5권4호
    • /
    • pp.156-162
    • /
    • 2012
  • When a vehicle passes through turnout, it is required to minimize the changes of lateral force for running safety of vehicle. Therefore, it is necessary to analyze interaction between the vehicle and the turnout in order to estimate the lateral force and the derailment coefficient on the turnout. In this paper, analysis model of the vehicle and turnout are established and analysis is carried out when the vehicle passes through turnout in order to improve running safety of the vehicle on turnout. To verify the vehicle and turnout analysis model, the contact points between wheel and rail and the influence of changing cradle and tongue rail are also discussed.

교량, 토공 접속구간 궤도동적계측 및 해석에 관한 연구 (Experimental and Analysis Study on Transition Area Between Bridge and Earthwork)

  • 강윤석;나성훈;신정렬;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.250-255
    • /
    • 2002
  • The transition between bridge and earthwork often causes the problems of maintenance. The damages of the track on the transition area influence running safety of train and serviceability, increase the maintenance cost. Therefore it is very important to evaluate the dynamic responses of transition and take a efficient measure. In order to evaluate the dynamic behavior of track, the field estimations are performed at the transition area of a conventional line between bridge and earthwork. And the track system on the transition area numerically analyzed to evaluate the dynamic behavior of damaged track with void sleeper. The measured values and Analysis results such as wheel contact force, rail stress, displacement acceleration and track irregularity in the transition area show the dynamic forces are severe. So it is recommended that the transition area should be improved the rigidity by reinforcing the rail.

  • PDF

KTX 동력차의 헌팅운동 해석 (Analysis on the Hunting Motion of the KTX Power Car)

  • 이승일;최연선
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.755-762
    • /
    • 2004
  • Dynamic analysis of the KTX can predict the dynamic motions in test drive. In this study an analytical model of the KTX is developed to find the critical speed. The numerical analysis for the nonlinear equation motions of 17 degrees of freedom shows the running stability and the critical speed due to the hunting motion of the KTX. Also, the vibration modes of the KTX are calculated using the ADAM/RAIL software, which show that the critical speed occurs for the yawing modes of the car body and the bogie. Finally, this paper shows that the critical speed of the KTX could be changed with the modifications of the design parameters of wheel conicity or wheel contact length.

한국형 고속전철(KTX) 방사패턴에 관한 연구 (A study on patterns of propagation for high speed train(KTX))

  • 구동회;김재철;박태원;문경호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.836-842
    • /
    • 2001
  • The more sophisticated patterns of propagation model is presented in this paper, which includes three different source characteristics. The spherical, cosine and dipole radiation characteristics compared and sound event level and the maximum sound level are calculated by experiment and calculation. It is shown that patterns of propagation has dipole characteristics for low speed range(below about 150km/h) at electric multiple system. We know that push-pull high speed system(maximum speed: 300km/h) has cosine characteristics of noise propagation. For this purpose, We conduct the experiment of noise and know the empirical formula of noise level and radiation coefficient K. This model of simulation is conducted through point source array model at wheel/rail contact point by using program and experimental formula. We can guess prediction of profile, flat and wear of wheel by above modeling in near field.

  • PDF

Telematics 기술의 건설현장 적용을 위한 경제적 타당성 분석 (Analysis of Economical Validity for Implementation of Telematics in Construction Fields)

  • 이성현;이동욱;구자경;이태식
    • 한국철도학회논문집
    • /
    • 제8권5호
    • /
    • pp.444-453
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

공압모델이 포함된 철도차량 제동 ASCU 시뮬레이션 (Simulations for an ASCU of a Train Brake including a Pneumatic Model)

  • 김호연;강철구
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.93-97
    • /
    • 2010
  • Wheel skids may occur during train operations due to low adhesion at the wheel-rail contact point abnormally, and the skids, in turn, result in flats appearing on the wheels, which affect safety and ride comfort significantly. Thus, anti-skid control has a crucial role for safe braking and prevention from flats that could cause a disastrous train accident. This paper presents simulation studies on an anti-skid control unit (ASCU) with a brake system of a rolling stock including a pneumatic model for brake power supply and dump valve operation.

  • PDF

KTX 헌팅운동 해석 (Analysis on the Hunting Motion of the KTX)

  • 이승일;김재철;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.755-761
    • /
    • 2003
  • The dynamic analysis of the KTX can predict the dynamic motions which occurred in test drive. In this study an analytical model of the KTX is developed to find the critical speed. The numerical analysis for the nonlinear equation motions of 17 degrees of freedom show the running stability and the critical speed due to the hunting motion of the KTX. Also, the vibration modes of the KTX are calculated using the ADAMS/RAIL software, which show that the critical speed occurs for the yawing modes of the car body and the bogie. Finally, this paper shows that the critical speed of the KTX could be changed with the modifications of the design parameters of wheel conicity and wheel contact point.

  • PDF