• 제목/요약/키워드: Wheel/Rail Noise

검색결과 114건 처리시간 0.024초

A Study on the Squeal Noise for Subway (지하철 스퀼소음에 관한 연구)

  • 문경호;유원희;김재철
    • Journal of the Korean Society for Railway
    • /
    • 제6권3호
    • /
    • pp.209-214
    • /
    • 2003
  • When a rail vehicle transverses tight curves, it often emits an intense, high-pitched squeal. This squeal has always been noticed as one of the most disturbing noise sources of railway systems. At present, we cannot predict squeal noise that is influenced by a large number of dependent parameters. In this study, we performed structural analysis to find out the frequency of the wheel and measured squeal noise at Seoul subway. We also tested reduction effectiveness of squeal noise through rail lubricator.

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway in Cholla Line (전라선 고가교 방음터널 효과검증)

  • Kim, Byoung-Sam;Lee, Tae-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.667-672
    • /
    • 2007
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

  • PDF

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway (고가철교 방음터널 효과검증)

  • Kim, Hyung-Doo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제17권3호
    • /
    • pp.122-127
    • /
    • 2008
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.

Review of the mitigations the exterior noise level of EMU (전동차 외부소음 저감 방안 검토)

  • Park, Kilbae;Park, HeaJun;Ki, Hocheul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.666-671
    • /
    • 2014
  • To reduce the exterior noise level of EMU, there are several ways have been evaluated. The noise sources for the exterior noise level are the traction motor, driving gear and wheel/rail rolling noise. In this article, the ways to mitigate the noise issue for EMU have been investigated and especially the way to protect the noise radiation from the bogie area and wheel/rail rolling noise. The way to evaluate the effect of the side skirt has been reviewed. To install the side skirt, the interface between the side skirt and the carbody and bogie should be examined and the acoustic design of the side skirt will be evaluated.

  • PDF

The Analysis and Experimental Study on the Wheel Absorber for Reduction of Noise Emission during the Train Operation (철도차량의 운행 중 소음 저감을 위한 휠업소버의 해석 및 실험적 고찰)

  • Son, Young-Jin;Chung, Su-Young;Jang, Won-Rak;Choi, Sang-Chun
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2163-2172
    • /
    • 2008
  • The noise to be considered as the most important in railway systems is the noise generated from the wheel/rail interaction. Such noise can be divided into three categories; that is, the rolling noise, the squeal noise and the wheel howling noise. Especially in metro systems, this type of noise has been considered seriously in recent years, and the diversified studies on the mechanism and solutions of such noise are in progress by many railways and researching bodies. In this study, a specially designed wheel absorber is installed in the wheel, and FEM analysis and laboratory tests are executed for the two cases, i.e. with wheel absorber and without wheel absorber, to check the effect of the wheel absorber in noise reduction. For the FEM analysis, the frequency response functions for respective cases are compared. And, for the laboratory test, following four cases are tested and compared; that is, i) with wheel only, ii) installation of ring damper only, iii) installation of damping material and cover, iv) installation of complete absorber system.

  • PDF

Study on the relation between creep phenomena and radiating squeal noise about the railway (철도차량 곡선부 주행시 차륜에 작용하는 크립과 스킬소음 발생에 관한 고찰)

  • Kim, Beom-Soo;Kim, Sang-Soo;Kim, Kwan-Ju;Lee, Chan-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2006
  • This paper presents experimental analysis of a friction-driven wheel responsible for generating wheel squeal. Squeal noise generating mechanism has been examined under the laboratory condition by the model rig. Creep characteristics and squeal noise were observed by varying relative velocity of the wheel with respect to the rail and friction coefficient. Computational radiating noise analysis was also performed based on the modal analysis and noise transfer function measurement of the object wheel.

  • PDF

Comparison of Track Vibration Characteristics for Domestic Railway Tracks in the Aspect of Rolling Noise (철도 전동 소음의 관점에서 해석한 국내 철도의 진동 특성 비교)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • 제16권2호
    • /
    • pp.85-92
    • /
    • 2013
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. The main contributors to rolling noise are the sleepers, rail, and wheels. In order to analyze and predict rolling noise, it is necessary to understand the vibrating behaviors of railway tracks, as well as of the wheels. In the present paper, theoretical modeling methods for railway track are reviewed in terms of rolling noise; these methods are applied for the three representative types of domestic railway tracks operated: the conventional ballasted track, KTX ballasted track and KTX concrete track. The characteristics of waves propagating along rails are investigated and compared among the types of tracks. The tracks are modeled as discretely supported Timoshenko beams and are compared in terms of the averaged squared amplitude of velocity, which is directly related to the sound radiation from the rails.

The Estimation of Structural-Borne Noise and Vibration of the Bridge under the Passage of the Light Rail Transit (경량전철 교량 상부구조의 열차주행에 대한 진동 및 소음 분석)

  • Yeo, In-Ho;Chung, Won-Seok;Kim, Sung-Choon;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • 제10권1호
    • /
    • pp.22-28
    • /
    • 2007
  • During the passage of the train, the railway bridge undergoes vibration and noise. The noise of railway bridge can be occurred from various sources. The wheel-rail contact, noise from machinery parts, structural-borne noise, pantagraph noise and aerodynamic noise of the train work in combination. Running train is one of the most important factors for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.