DOI QR코드

DOI QR Code

Comparison of Track Vibration Characteristics for Domestic Railway Tracks in the Aspect of Rolling Noise

철도 전동 소음의 관점에서 해석한 국내 철도의 진동 특성 비교

  • Ryue, Jungsoo (School of Naval Architecture and Ocean Engineering, University of Ulsan) ;
  • Jang, Seungho (Korea Railroad Research Institute)
  • Received : 2012.10.19
  • Accepted : 2013.02.18
  • Published : 2013.04.28

Abstract

An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. The main contributors to rolling noise are the sleepers, rail, and wheels. In order to analyze and predict rolling noise, it is necessary to understand the vibrating behaviors of railway tracks, as well as of the wheels. In the present paper, theoretical modeling methods for railway track are reviewed in terms of rolling noise; these methods are applied for the three representative types of domestic railway tracks operated: the conventional ballasted track, KTX ballasted track and KTX concrete track. The characteristics of waves propagating along rails are investigated and compared among the types of tracks. The tracks are modeled as discretely supported Timoshenko beams and are compared in terms of the averaged squared amplitude of velocity, which is directly related to the sound radiation from the rails.

철도 전동 소음은 철도에서 발생하는 대표적인 소음으로서 차륜과 레일의 음향 조도에 의해 유기된다. 철도 전동 소음의 주요 소음원으로는 침목, 레일 그리고 차륜을 들 수 있다. 따라서 철도의 전동 소음을 해석하기 위해서는 차륜의 진동 특성과 함께 궤도의 진동을 해석하고 그 특성을 이해하는 작업이 수행되어야 한다. 본 논문에서는 전동 소음의 관점에서 레일의 진동을 해석하기 위한 이론적 궤도 모델링에 대해 기술하고, 국내의 대표적인 세 가지 철도 궤도에 대해 진동 해석을 수행하였다. 해석에 사용한 궤도로는 기존선 자갈 도상 궤도, KTX 자갈 도상 궤도, KTX 콘크리트 궤도를 선정하였으며, 각 궤도 별로 레일을 따라 진행하는 파동의 전파 특성을 해석하고 그 결과를 비교하였다. 해석 시 궤도는 이산 지지를 가진 Timoshenko 보로 모델링하였으며, 레일의 평균 진동 속도를 이용해 세 궤도 레일의 방사 소음 특성을 간접 비교하였다.

Keywords

References

  1. D.J. Thompson (2009) Railway noise and vibration: Mechanisms, modeling and means of control, Elsevier Ltd, Philidelphia.
  2. D.J. Thompson, P. Fodiman and H. Mahe (1996) Experimental validation of the TWINS prediction program, Part 2: results, Journal of Sound and Vibration, 193, pp. 137-147. https://doi.org/10.1006/jsvi.1996.0253
  3. S.C. Yang, S.Y. Jang, E. Kim (2011) Determination of upper limit of rail pad stiffness for ballasted and concrete track of high-speed railway considering running safety, Journal of the Korean Society for Railway, 14(6), pp. 526-534. https://doi.org/10.7782/JKSR.2011.14.6.526
  4. K. Knothe, S.L. Grassie (1993) Modelling of railway track and vehicle/track interaction at high frequencies, Vehicle System Dynamics, 22, pp. 209-262. https://doi.org/10.1080/00423119308969027
  5. D.J. Thompson, N. Vincent (1995) Track dynamic behavior at high frequencies. Part 1: theoretical models and laboratory measurements, Vehicle System Dynamics, 24, pp. 86-99. https://doi.org/10.1080/00423119508969617
  6. D.J. Thompson (1993) Wheel-rail noise generation. Par III: Rail vibration, Journal of Sound and Vibration, 161, pp. 421- 446. https://doi.org/10.1006/jsvi.1993.1084
  7. L. Gavric (1995) Computation of propagative waves in free rail using a finite element technique, Journal of Sound and Vibration, 183(3), pp. 531-543.
  8. N. Vincent, D.J. Thompson (1995) Track dynamic behavior at high frequencies. Part 2: experimental results and comparisons with theory, Vehicle System Dynamics, 24, pp. 100-114. https://doi.org/10.1080/00423119508969618
  9. M.A. Heckl (2002) Coupled waves on a periodically supported Timoshenko beam, Journal of Sound and Vibration, 252, pp. 849-882. https://doi.org/10.1006/jsvi.2001.3823
  10. W.H. Yu (2001) Design optimization study on bogie mechanism, KRRI-Research-01-51, KRRI, Research report of Korea Railroad Research Institute.

Cited by

  1. Characteristics of Vibration and Sound Radiated from Rails of Concrete Slab Tracks for Domestic High Speed Trains vol.23, pp.7, 2013, https://doi.org/10.5050/KSNVE.2013.23.7.605
  2. Theoretical Analysis on the Array Microphone Measurement for Noise from Rails vol.33, pp.4, 2014, https://doi.org/10.7776/ASK.2014.33.4.238