• Title/Summary/Keyword: Wetting dynamics

Search Result 21, Processing Time 0.023 seconds

Calibration and Verification of a Hydrodynamic Model in Chunsu Bay and Adjacent Coastal Water (천수만과 인근연안에서 수역학모델의 보정 및 검증)

  • Kyeong Park;Jeong Hwan Oh
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.109-119
    • /
    • 1998
  • A horizontal tow-dimensional version of POM (Princeton Ocean Model) was modified in representing the bottom friction and the open boundary conditions. To simulate the flooding and drying of intertidal flats, a wetting-and-drying scheme was incorporated into the model. The model then was applied to the Chunsu Bay and its adjacent coastal water. Only the water movement due to tides, the dominant forcing in the study area, was considered. This presents the procedure and the results of model calibration and verification for the Chunsu Bay system. The model was calibrated, using the average tidal characteristics in Tide Tables, for the amplitudes and the phases of tidal waves throughout the modeling domain. Calibration results showed that the model gave a good reproduction of tidal waves. The calibrated model was verified using the time-series measurements of surface elevation and current velocity in the summer of 1995. The model reproduced the tides currents very well. calibration and verification results demonstrated that the model is capable of reproducing the tidal dynamics in the Chunsu Bay system.

  • PDF

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

Development of Multiscale Simulation Technique for Multiphase Fluid System (다상 유체 시스템의 다중 스케일 시뮬레이션 기법에 관한 연구)

  • Han, Min-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.569-577
    • /
    • 2010
  • A multiscale particle simulation technique that can be applied to a multiphase fluid system has been developed. In the boundary region where the macroscopic- and microscopic-scale models overlap each other, three distinctive features are introduced in the simulation. First, a wall is set up between the gas and liquid phases to separate them and match the phases respectively to the macroscopic conditions stably. Secondly, the interfacial profile is obtained near the matching region and the wall translates and rotates to accommodate the change in the liquid-vapor interfacial position in the molecular model. The contact angle thus obtained can be sent to the macroscopic model. Finally, a state of mass and temperature in the region is maintained by inserting and deleting the particles. Good matching results are observed in the cases of the complete and partial wetting fluid systems.

On the use of alternative water use efficiency parameters in dryland ecosystems: a review

  • Kang, Wenping;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.246-253
    • /
    • 2019
  • Background: Water use efficiency (WUE) is an indicator of the trade-off between carbon uptake and water loss to the atmosphere at the plant or ecosystem level. Understanding temporal dynamics and the response of WUE to climatic variability is an essential part of land degradation assessments in water-limited dryland regions. Alternative definitions of and/or alternative methodologies used to measure WUE, however, have hampered intercomparisons among previous studies of different biomes and regions. The present study aims to clarify semantic differences among WUE parameters applied in previous studies and summarize these parameters in terms of their definition and methodology. Additionally, the consistency of the responses of alternative WUE parameters to interannual changes in moisture levels in Northeast Asia dryland regions (NADRs) was tested. Results: The literature review identified more than five different WUE parameters defined at leaf and ecosystem levels and indicates that major conclusions regarding the WUE response to climatic variability were partly inconsistent depending on the parameters used. Our demonstration of WUE in NADR again confirmed regional inconsistencies and further showed that inconsistencies were more distinct in hyper- and semi-arid climates than in arid climates, which might reflect the different relative roles of physical and biological processes in the coupled carbon-water process. Conclusions: The responses of alternative WUE parameters to drying and wetting may be different in different regions, and regionally different response seems to be related to aridity, which determines vegetation coverage.

A Study on the Behavior of a Droplet Impacting onto a Heated Surface (고온 벽면과 충돌하는 단일 액적의 거동에 관한 연구)

  • Kang, Bo-Seon;Lee, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.871-880
    • /
    • 1999
  • In this paper an experimental study is presented of the problem of dynamic behavior of a water droplet impinging upon a heated surface. The experiments are mainly focused on the effects of impinging angle of a droplet and surface temperature on the impact dynamics of the droplet. It Is clarified that the droplet exhibits much different behavior depending on the normal momentum of an impinging droplet before impact. At surface temperature In the nucleate boiling regime. the disintegration of a droplet doesn't occur, whereas the deforming droplet adheres to the surface. The spreading and contraction of the liquid film is repeated a couple of times for the horizontal surface but the expanded droplet just slips without noticeable contraction for the inclined surfaces. In the film boiling regime, the impinging droplet spreads over the surface as a liquid film which is separated from the surface by produced vapor. Depending on the magnitude of the normal momentum of the droplet the disintegration into the several irregular shapes of liquid elements occurs for the horizontal and 30o-inclined surfaces, whereas the impinging droplet for the 60o-inclined surface doesn't break up and tends to recover the original spherical shape.

A Numerical Study on the Optimization of Urea Solution Injection to Maximize Conversion Efficiency of NH3 (NH3 전환효율 극대화를 위한 Urea 인젝터의 분사 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jo, Nakwon;Oh, Sedoo;Jeong, Soojin;Park, Kyoungwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • From now on, in order to meet more stringer diesel emission standard, diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filters. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the urea-SCR device for diesel passenger cars and light duty vehicles. That is because their operational characteristics are quite different from heavy duty vehicles, urea solution injection should be changed with other conditions. Therefore, the number and diameter of the nozzle, injection directions, mounting positions in front of the catalytic converter are important design factors. In this study, major design parameters concerning urea solution injection in front of SCR are optimized by using a CFD analysis and Taguchi method. The computational prediction of internal flow and spray characteristics in front of SCR was carried out by using STAR-CCM+7.06 code that used to evaluate $NH_3$ uniformity index($NH_3$ UI). The design parameters are optimized by using the $L_{16}$ orthogonal array and small-the-better characteristics of the Taguchi method. As a result, the optimal values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance(ANOVA). The compared maximize $NH_3$ UI and activation time($NH_3$ UI 0.82) are numerically confirmed that the optimal model provides better conversion efficiency of $NH_3$. In addition, we propose a method to minimize wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading. Consequently, the thickness reduction of fluid film in front of mixer is numerically confirmed through the mounting mixer and correcting injection direction by using the trial and error method.

Spreading Dynamics of an Ellipsoidal Drop Impacting on a Heated Substrate (고온으로 가열된 고체 표면과 충돌하는 타원형 액적의 퍼짐 거동)

  • Yun, Sungchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.205-209
    • /
    • 2017
  • Unlike spherical drop impact, ellipsoidal drop impact can control the bouncing height on a heated surface by significantly altering impact behavior. To scrutinize the effect of the aspect ratio (AR) of the drop on the bounce suppression, in this study, non-axisymmetric spreading behaviors are observed from two side views and characterized based on the spreading width of the drop for horizontal principal axes. In addition, the maximum spreading width is investigated for various ARs. The results show that as the AR increases, the maximum spreading width of the minor axis increases, whereas that of the major axis shows no significant variation. In the regime of high AR and high impact velocity, liquid fragmentations by three parts are observed during bouncing. These fragmentations are discussed in this work. The hydrodynamic features of ellipsoidal drop impact will help understand bouncing control on non-wetting surfaces for several applications, such as self-cleaning and spray cooling.

Variability of Hydrologic Partitioning revisiting Horton Index (Horton 지수의 재논의를 통한 수문분할의 변동성)

  • Choi, Dae-Gyu;Choi, Min-Ha;Ahn, Jae-Hyeon;Park, Moo-Jong;Kim, Sang-Dan
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • In order to explore vegetation adaptation to climate variability and the impacts on water balance dynamics, the inter-regional and the inter-annual variability of both water availability and vegetation productivity are investigated. The Horton index, which is the ratio between actual evapotranspiration and catchment wetting as a measure of vegetation water use at catchment-scale, is revisited to quantify the effects of growing-season water availability on hydrologic partitioning at catchment scale. It is shown that the estimated Horton index is relatively constant irrespective of inter-annual climate variability. In addition, the Horton index is compared with catchment-scale vegetation rain use efficiency. The results show that there is an interesting pattern in the response of vegetation water use to water availability. When water becomes the limiting factor for vegetation productivity, the catchment-scale vegetation rain use efficiency converges to a common maximum value in agreement with earlier findings at the ecosystem level.

Microdroplet Impact Dynamics at Very High Velocity on Face Masks for COVID-19 Protection (코로나-19 보호용 페이스 마스크에서의 액적 고속 충돌 거동)

  • Choi, Jaewon;Lee, Dongho;Eo, Jisu;Lee, Dong-Geun;Kang, Jeon-Woong;Ji, Inseo;Kim, Taeyung;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.282-288
    • /
    • 2022
  • Facial masks have become indispensable in daily life to prevent infection and spread through respiratory droplets in the era of the corona pandemic. To understand how effective two different types of masks (i.e., KF-94 mask and dental mask) are in blocking respiratory droplets, i) we preferentially analyze wettability characteristics (e.g., contact angle and contact angle hysteresis) of filters consisting of each mask, and ii) subsequently observe the dynamic behaviors of microdroplets impacting at high velocities on the filter surfaces. Different wetting properties (i.e., hydrophobicity and hydrophilicity) are found to exhibit depending on the constituent materials and pore sizes of each filter. In addition, the pneumatic conditions for stably and uniformly dispensing microdroplets with a certain volume and impacting behaviors associated with the impacting velocity and filter type change are systematically explored. Three distinctive dynamics (i.e., no penetration, capture, and penetration) after droplet impacting are observed depending on the type of filter constituting the masks and droplet impact velocity. The present experimental results not only provide very useful information in designing of face masks for prevention of transmission of infectious respiratory diseases, but also are helpful for academic researches on droplet impacts on various porous surfaces.

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.