• 제목/요약/키워드: Wet sand

Search Result 104, Processing Time 0.025 seconds

A Numerical Study on the Size and Depositions of Yellow Sand Events (황사의 크기 및 침착량에 대한 수치 모의)

  • 정관영;박순웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.191-208
    • /
    • 1998
  • Estimations of dry and wet depositions in Korea and the size distributions of yellow sand above Korea have been carried out using the Eulerian aerosol model with the simulated meteorological data from the SNU mesoscale meteorological model. The estimated particle size distribution in Korea shows a bimodal distribution with peak values at 0.6 pm and 7 pm and a minimum at 2 pm in the lower layer However, as higher up, the bimodal distribution becomes an unimodal distribution with a peak value at 4∼5mm. Among the total amount of yellow sand deflated in the source regions , the dry and wet deposition fluxes were about 92%, and about 1.3∼0.5%, repectively, and the rest(5∼6%) is suspended in the air, Most of dust lifted in the air during the clear weather is deposited in the vicinity of the source regions by dry deposition and the rest undergoes the long -range transport with a gradual removal by the wet deposition processes. Over Korean peninsula, the total amount of yellow sand suspended in the air was about 6∼8% of the emissions in the source region and the dry and wet deposition fluxes were about 0.005∼0.7% and 0.003∼0.051% of the total emitted amount, repectively. It is estimated that 2.7∼8.9 mesa-tons of yellow sand is transported annually over the Korean peninsula with the annual mean dry deposition of 2.1∼490 kilo-tons and the annual mean wet deposition of 1.5∼65 kilo-tons.

  • PDF

An Experimental Study on the Quality Estimation of the Mortar using High-Quality Recycled Sand Producted from the Manufacturing System by Wet Gravity Separation (습식비중분리시스템에서 생산된 고품질 순환모래를 사용한 모르타르의 품질평가에 관한 실험적 연구)

  • Lee, Ji-Hwan;Rho, Hyoung-Nam;Lee, Jong-suk;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.103-107
    • /
    • 2008
  • This study was to execute the experiment for analyzing the quality characteristics of mortar by type of recycled sand by using the recycled sand produced by the manufacturing system by wet gravity separation in order to develop the removal device of impurities for the production of high-quality recycled sand. As a result, this study has sown that the mortar using the high-quality recycled sand through the manufacturing system by wet gravity separation in the fluidity property, strength property, and shrinkage property largely, compared with the mortar using low-quality recycled sand that not passed the device of sand flux. There was a tendency similar to the plane mortar. In conclusion, it was considered as various quality performances of the recycled sand were improved through the production stage of prototype.

  • PDF

A Study on Quality Properties of Mortar by Production Stage for Recycled Sand in Wet Gravity Separation System (습식비중분리시스템에서 생산된 순환모래의 생산단계별 모르타르의 품질특성에 관한 연구)

  • Lee, Ji-Hwan;Lee, Seung-Min;Bae, Gi-Seon;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.339-340
    • /
    • 2009
  • this study, after examining quality of mortar for different manufacturing stages of recycled sand produced by wet gravity separation system, it was found that the quality of recycled sand was improved greatly after going through the wet gravity separation system.

  • PDF

Exploration of Feedback Structures Between Surface Moisture and Aeolian Processes with a Modified Sand Slab Model (수정 모래판 모형을 이용한 지표수분 함량과 비사이동의 되먹임 구조 탐색)

  • Rhew, Hosahng
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.61-81
    • /
    • 2017
  • Traditional approaches to surface moisture problems in the context of aeolian research have focused on the initiation of sand movement, developing various models for predicting threshold velocity on a wet surface. They have been unsatisfactory, however, in explaining field observations because they have not incorporated spatiotemporal variability of surface moisture, the interactions between transported sand grains and surface, and the role of aeolian transport in controlling surface moisture. As Nield (2011) showed, a simplified numerical model can be used to investigate this issue. This research aims to explore the feedback structures between aeolian transport and surface moisture using a modified sand slab model. Key modifications are the introduction of simultaneous updating scheme for all the slabs and moisture-assigning procedures with and without aeolian transport. The major findings are as follows. Moist surface conditions suppress sand slab movement, leading to the development of smaller-scale topography. Available sands for aeolian transport are determined by the vertical patterns of moisture content with its variations from groundwater to the surface. Sand patches on a wet surface act as a localized source area. Sand movement drives immediate changes in surface moisture rather than time-lag reponses, mostly when moist conditions are dominant.

Growth Responses of the Scallop Patinopecten yessoensis (Pelecypoda: Pectinidae) to Shell Bioerosion and Bottom Sediment Type

  • Silina, Alla V.
    • The Korean Journal of Malacology
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • Data obtained from field observation revealed that the degree of shell bioerosion of the scallop, Patinopecten (Mizuhopecten) yessoensis, by endolithic organisms significantly higher on the muddy sand than on the sand. At the area studied, the polychaete worm, Polydora brevipalpa (=Polydora ciliata brevipalpa, Polydora ciliata Okuda, Not Johnston, Polydora variegata), which is common symbiotic species for the scallop made 95-100% of total scallop shell bioerosion at the area studied. The muddy bottom sediments enriched by organic matter create favourable conditions for development of microphytobenthos and bacteria, which are predominantly consumed by P. brevipalpa. Linear regressions for the degree of shell bioerosion on the scallop shell height, total wet weight and adductor muscle wet weight revealed negative relationships between them for the scallops inhabiting both sand and muddy sand. The influence of polychaetes on scallops is complex. They may be food competitors. Polychaete can directly affect the host through their boreholes. Scallop expends energy for shell regeneration to prevent the polychaete penetration into its interior cavity. It was found that the degree of shell bioerosion increased considerably with scallop age.

  • PDF

Current Wet Deposition of Pu Isotopes in the mid-Yellow Sea Coast of Korea (최근 한반도 중부 황해안의 Pu 핵종 습식 침착)

  • 이상한;정창수;김석현;이광우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 1999
  • $^{239+240}Pu$ concentrations in precipitation were determined for the period of May 1994 to August 1996 in oder to describe current $^{239+240}Pu$ deposition at the mid-western coat of Korea (Ansan, 37$^{\circ}$17'N, $126^{\circ}$50'E). $^{239+240}Pu$ concentration in daily precipitation varied from 0.05 to 131$\mu$Bq $kg^{-1}$ with a geometric mean of $1.26\mu$Bq $kg^{-1}$. The concentration was high in the period of Yellow Sand Storm in spring and low in wet summer monsoon. The specific $^{239+240}Pu$ concentration in daily precipitation appears to be controlled by the $^{239+240}Pu$ input to the atmosphere in spring and washout effects by precipitation in the wet summer monsoon. Wet depositional flux of $^{239+240}Pu$ varied from 4 to 123$\mu$Bq $m^{-2}d^{-1}$ with a geometric mean of $33.8\mu$Bq $m^{-2}d^{-1}$ and with a maximum in the period of Yellow Sand Storm and a minimum in the period of wet summer monsoon. $^{238}Pu$/$^{239+240}Pu$ activity raios(0.04~0.31) in precipitation for March-June period suggested that one of the major sources of Pu isotopes falling in Ansan area is the arid region of the Chinese continent.

  • PDF

Study on the Prevention of Corrosion Damage for Underground Fuel Stroage Tank(1) (Corrosion Damage under the Sea Sand) (지하연료저장탱크의 부식손상 방지에 관한 연구(1) (바다모래에서 부식 손상))

  • 임우조;서동철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • As consumption rate of energy increase rapidly, the facilities of fuel storage tank become large size. Almost all of the industry or public facilities storing fuel in underground fuel storage tank is manufactured by steel materials. Thus, this fuel storage tank made of steel materials is damaged by stray-current corrosion, it become destruction. If fuel storage tank is destructed, petroleum, oil and gas are leaked. So it bring about environmental pollution, energy loss, fire and explosion. Therefor, in this study, for study on the prevention of corrosion damage in underground fuel storage tank, it were investigated by corrosion and stray-current corrosion for SS 400 in dry sea sand and wet sea sand along to specific resistance. The main results obtained are as follows : As specific resistance decrease in wet sea sand, corrosion rate per year increase linearly, in case of back fill up wet sea sand in underground fuel storage tank, if the water is flow into dry sea sand, corrosion tendency of underground fuel storage tank is supposed sensitive.

  • PDF

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

Prediction of Tensile Strength of Wet Sand (I) : Theory (습윤 모래에서 인장강도의 예측 (I) : 이론)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.27-35
    • /
    • 2008
  • At low normal stress levels tensile strength of sand varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand is presented. A closed form expression for tensile strength unifies tensile strength characteristics in all three water retention regimes: pendular, funicular, and capillary. Three parameters are employed in the theory; namely, the Internal friction angle (at low normal stress) ${\phi}_t$, the inverse value of the air-entry pressure ${\alpha}$, and the pore size spectrum parameter n. It is shown that the magnitude of peak tensile strength is dominantly controlled by the ${\alpha}$ parameter. The saturation at which peak tensile strength occurs only depends on the pore size spectrum parameter n.

Prediction of Tensile Strength of Wet Sand (II) : Validation (습윤 모래에서 인장강도의 예측 (II) : 검증)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.37-44
    • /
    • 2008
  • At low normal stress levels, tensile strength of sand characteristically varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand was presented in the previous study. In this study, the results of uniaxial tensile, suction-saturation and direct shear tests obtained from three sands (Esperance sand from Seattle, Washington, clean sand from Perth, Australia, and Ottawa sand) are used to validate the proposed theory. The closed form expression of the proposed theory can predict well the experimental data obtained from these sands in terms of the variation patterns of tensile strength over the entire saturation regimes, the magnitude of the tensile strength, its peak value, and the corresponding degree of saturation when the peak strength occurs.