• 제목/요약/키워드: Wet oxidation

검색결과 224건 처리시간 0.034초

아조염료 Reactive Black 5 폐수의 촉매습식산화 (Catalytic Wet Oxidation of Azo Dye Reactive Black 5)

  • 서일순;유신석;고미소;정사무엘;정철구;홍정아;윤왕래
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.259-267
    • /
    • 2010
  • 불균일 촉매 CuO를 이용한 반응성 아조계 염료 Reactive Black 5(RB5) 폐수의 촉매습식산화에서 반응온도($190{\sim}230^{\circ}C$) 및 촉매농도(0.00~0.20 g/l)가 폐수의 색도 및 총 유기탄소 TOC 제거에 미치는 영향을 조사하였다. 폐수의 색도는 분광광도계를 사용하여 측정하였고, 습식산화속도는 TOC를 이용하여 산출하였다. 열분해 조건($230^{\circ}C$, 120 min)에서 폐수의 색도는 약 90%까지 제거되었지만 TOC는 제거되지 않았다. RB5 폐수 촉매 습식산화에서의 폐수의 색도 및 TOC 제거속도는 반응온도 및 촉매농도를 증가시킴에 따라 증가하였다. 촉매의 영향은 0.01 g CuO/l에서 이미 상당히 크게 나타났으며 0.05 g CuO/l 이상에서의 촉매농도 증가에 따른 효과는 작았다. 폐수 색도의 초기변화는 색도에 대한 1차 반응속도론으로 나타낼 수 있었으며, TOC 변화는 폐수 TOC를 쉽게 산화되는 TOC와 난분해성 TOC 로 구분한 global 모델로 묘사할 수 있었다. 반응온도의 폐수 색도 및 TOC 제거속도에 미치는 영향은 Arrhenius 상관관계식으로 묘사할 수 있었다. RB5 폐수의 열분해, 습식산화 및 0.20 g CuO/l의 촉매농도를 사용한 촉매습식산화 조건에서의 색도 제거반응의 활성화에너지는 각각 108.4, 78.3 및 74.1 kJ/mol의 값을 나타내었다. RB5 폐수 촉매습식산화에서의 TOC 제거반응에서 산화 최종산물로의 전환에 대한 난분해성 중간산물로의 전환 비는 페놀 습식산화에 비하여 상대적으로 높았다.

Potassium Ferrate(VI)를 이용한 Benzothiophene 분해특성 연구 (Degradation of Benzothiophene by Potassium Ferrate(VI))

  • 이권철;김일규
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.643-649
    • /
    • 2011
  • Degradation of benzothiophene(BT) in the aqueous phase by potassium ferrate(VI) was investigated. Potassium ferrate(VI) was prepared by the wet oxidation method. The degradation efficiency of BT was measured at various values of pH, ferrate(VI) dosage and initial concentration of BT. BT was degraded rapidly within 30 seconds by ferrate(VI). While the highest degradation efficiency was achieved at pH 5, the lowest degradation efficiency was achieved at pH 9. Also, the initial rate constant of BT increased with decreasing of the BT initial concentration. In addition, the intermediate analysis for the reaction of BT and ferrate(VI) has been conducted using GC-MS. Benzene, styrene, benzaldehyde, formaldehyde, benzoic acid, formic acid, and acetic acid were identified as reaction intermediates, and ${SO_4}^{2-}$ was identified as an end product.

Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights

  • Kalmakhanova, Marzhan Seitovna;Diaz de Tuesta, Jose Luis;Kabykenovna, Bakytgul;Gomes, Helder Teixeira
    • Environmental Engineering Research
    • /
    • 제25권2호
    • /
    • pp.186-196
    • /
    • 2020
  • Pillared clays with Zr and Fe/Cu/Zr polycations have been prepared from natural clays found in large deposits of Kazakhstan and assessed as catalysts for the catalytic wet peroxide oxidation (CWPO), using 4-nitrophenol (4-NP) as model compound. The performance of the catalysts was followed by measuring the concentration of 4-NP, H2O2 and the total organic carbon (TOC), considering C4-NP = 5 g L-1, $C_{H_2O_2}$ = 17.8 g L-1, Ccat = 2.5 g L-1, initial pH = 3.0 and T = 50℃. At those selected conditions, the pillared clays showed higher activity than natural clays in the CWPO of 4-NP. The conversion of the model pollutant was complete when Fe/Cu/Zr-PILCs were used, with the TOC removal reaching 78.4% after 24 h with the best Fe/Cu/Zr-PILC. The H2O2, 4-NP and TOC time-evolution was well described by a kinetic model based on TOC lumps in three blocks, considering the initial TOC (corresponding to 4-NP), the production of oxidizable intermediates and the formation of refractory products.

SiC CMOS 게이트 산화막에 관한 연구 (Study of The SiC CMOS Gate Oxide)

  • 최재승;이원선;신동현;김영석;이형규;박근형
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.29-32
    • /
    • 2001
  • In this paper, the thermal oxidation behaviors and the electrical characteristics of the thermal oxide grown on SiC are discussed. For these studies the oxide layers with various thickness were on SiC in wet $O_2$ or dry $O_2$ at l15$0^{\circ}C$ and the MOS capacitors using the 350$\AA$ gate oxide grown in wet $O_2$ were fabricated and electrically characterized. It was found from the experimental results that the oxidation rate of SiC with the Si-face and with the carbon-face were about 10% and 50% of oxidation rate of Si. The C-V measurement results of the SiC oxide showed abnormal hysterisis properties which had ever been not observed for the Si oxide. And the hysterisis behavior was seen more significant when initial bias voltage was more negative or more positive. The hysterisis property of the SiC oxide was believed to be due the substantial amount of the deep level traps to exist at the interface between the oxide and the SiC substrate. The leakage of the SiC oxide was found to be one order larger than the Si oxide, but the breakdown strength was almost equal to that of the Si oxide.

  • PDF

산화 적층 결합의 생성, 성장 및 소멸에 관한 연구 - 제1부:산화 적층 결함의 생성과 열적 거동 (A Study on Nucleation, Growth and Shrinkage of Oxidation Induced Stacking Faults (OSF) -Part 1: Nucleation and Thermal Behavior of Oxidation Induced Stacking Faults(OSF))

  • 김용태;김선근;민석기
    • 대한전자공학회논문지
    • /
    • 제25권7호
    • /
    • pp.759-766
    • /
    • 1988
  • the effect of heat treatment in oxygen ambient on the nucleation and growth of oxidation induced stacking faults(OSF) in n-type(100)silicon wafer has been investigated. The growth of OSF is determind as a function of oxygen concentration in silicon wafer, heat treatment time and temperature, and the activation energy for the growth of OSF can be obtained from the growth kinetics. The activation energies are respectively 2.66 eV for dry oxidation and 2.37 eV for wet oxidation. In this paper, we have also studied the structural feature of OSF with the comparison of optical microscopic morphology and crystalline structure.

  • PDF

탄화규소질 내화판에 있어서 내산화 첨가제의 영향 (The Effects of Various Anti-Oxidation Additives in Silicon Carbide Refractory Saggars)

  • 이준근
    • 한국세라믹학회지
    • /
    • 제17권3호
    • /
    • pp.145-150
    • /
    • 1980
  • This paper deals with the clay-bonded silicon carbide refractory saggars in terms of its oxidation resistance. Oxidation is one of the major causes of failure in silicon carbide refractory saggars during its services. Various anti-oxidation additives are coated on or added into silicon carbide refractories and their effects are studied while other conditions are equal. Several conclusions can be derived for optimum anti-oxidation additive as: 1. The additive should wet each silicon carbide grain completely during its firing. 2. The additive should have high viscosity at temperatures around $1, 350^{\circ}C$ where most silicon carbide refractory saggars are being used. 3. The additive should have ability to absorb or desorb oxygen depending on the local atmosphere inside of saggar during it service. 4. The addition should be kept as minimum as possible to prevent any "sweating" or "bloating" phenomena.ing" phenomena.mena.

  • PDF

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

습식분쇄공정에서 액상매체가 실리콘 분쇄 및 산화특성에 미치는 영향 (The Effect of Liquid Medium on Silicon Grinding and Oxidation during Wet Grinding Process)

  • 권우택;김수룡;김영희;이윤주;신동근;원지연;오세천
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.121-126
    • /
    • 2014
  • The influence of a liquid medium duringa wet-milling process in the grinding and oxidation of silicon powder was investigated. Distilled water, dehydrated ethanol and diethylene glycol were used as the liquid media. The applied grinding times were 0.5, 3, and 12 h. Ground silicon powder samples were characterized by means of aparticle size analysis, scanning electron microscopy(SEM), x-ray powder diffraction (XRD), FT-IR spectroscopy and by a chemical composition analysis. From the results of the characterization process, we found that diethylene glycol is the most efficient liquid medium when silicon powder is ground using a wet-milling process. The FT-IR results show that the Si-O band intensity in an unground silicon powder is quite strongbecause oxygen becomes incorporated with silicon to form $SiO_2$ in air. By applying deionized water as a liquid medium for the grinding of silicon, the $SiO_2$ content increased from 4.12% to 31.7%. However, in the cases of dehydrated ethanol and diethylene glycol, it was found that the $SiO_2$ contents after grinding only changed insignificantly, from 4.12% to 5.91% and 5.28%, respectively.

Cu wire 촉매를 이용한 촉매습식과산화공정에 의한 1,4-다이옥산의 분해 (1,4-Dioxane Decomposition by Catalytic Wet Peroxide Oxidation using Cu Wire Catalysts)

  • 이동근;김둘선
    • 청정기술
    • /
    • 제22권4호
    • /
    • pp.281-285
    • /
    • 2016
  • 난분해성 1,4-다이옥산을 분해시키기 위하여 촉매습식과산화반응에 활성적인 Cu wire촉매를 사용하였다. Cu wire 촉매를 사용함으로써 1,4-다이옥산의 완전한 분해가 가능하였으나, 분해된 1,4-다이옥산은 완전 무기화($CO_2$$H_2O$로 전환)되지 못하고 중간생성물인 ethylene glycol diformate, oxalic acid, formic acid, formaldehyde, acetaldehyde 등으로 전환되었다. 1,4-다이옥산이 분해되어 없어짐에 따라 formaldehyde와 oxalic acid가 점진적으로 나타나기 시작하여 증가하다가 최고농도를 보인 후 다시 감소하였다. 이들 두 중간체의 최고농도 도달시점에 acetaldehyde의 농도가 급격히 증가하여 최고농도를 보인 후 다시 감소하였다. 이들 세가지 중간물질의 감소와 함께 ethylene glycol diformate, formic acid가 생성되기 시작하여 그 농도가 점진적으로 증가하였다. 이들은 연속적인 과정을 통해 생성되었다. Cu wire 촉매는 반응이 진행되는 동안 활성이 떨어지지 않고 매우 안정적이었다.