• Title/Summary/Keyword: Wet forming process

Search Result 36, Processing Time 0.032 seconds

Study on an Intermediate Compound Preparation for a HTGR Nuclear Fuel (고온가스로용 핵연료 중간화합물 제조에 대한 연구)

  • Kim, Yeon-Ku;Suhr, Dong-Soo;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.725-733
    • /
    • 2008
  • In this study the preparation method of the spherical ADU droplets, intermediate compound of a HTGR nuclear fuel, was detailed-reviewed and then, the characteristics on an ageing and a washing steps among the wet process and the thermal treatment process on the died-ADU${\rightarrow}UO_3$ conversion with the high temperature furnaces were studied. The key parameters for spherical droplets forming are a precise control of feed rate and a suitable viscosity value selection of a broth solution. Also, a harmony of vibrating frequency and amplitude of a vibration dropping system are important factor. In our case, an uranium concentration is $0.5{\sim}0.7mol/l$, viscosity is $50{\sim}80$ centi-Poise, vibration frequency is about 100Hz. In thermal treatment for no crack spherical $UO_3$ particle, the heating rate in the calcination must be operated below $2^{\circ}C$/min, in air atmosphere.

Development of Build up Multilayer Board Rapid Manufacturing Process Using Screen Printing Technology (스크린인쇄 법을 이용한 Build-up다층인쇄회로기판의 쾌속제조공정 기술개발)

  • 조병희;정해도;정해원
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.15-22
    • /
    • 1999
  • Generally, many equipments and a long lead time ale required to manufacture the build-up multilayer board through various processes such as etching, plating, drilling etc. Wet process is suitable for mass production, however it is not adequate for manufacturing prototype in developing stage. In this study, a silk screen printing technology is introduced to make a prototype build-up multilayer board. As for the material photo/thermal curable resin and conductive paste are used for forming dielectric and conductor. And conductive paste fills vias for interconnecting each layer, and also is used for circuit patterning by silk screen technology. Finally, the basic concept and the possibility of build-up multilayer board prototype is proposed and verified as a powerful approach, compared with the conventional processes.

  • PDF

Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials (페로브스카이트 반도체 물질에 원형 패턴을 형성하기 위한 상압플라즈마 식각 기술)

  • Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.10-15
    • /
    • 2021
  • In this paper, we formed perovskite (CH3NH3PbI3) thin films on glass with wet coating methods, and used various analytical techniques to discuss film thickness, surface roughness, crystallinity, composition, and optical property. The coated semiconductor material has no defects and is uniform, the surface roughness value is very small, and a high absorption rate has been observed in the visible light area. Next, in order to implement the hole shape in the organic-inorganic layer, Samples in the order of a metal mask with holes at regular intervals, a glass coated with a perovskite material, and a magnet were etched with atmospheric pressure plasma equipment. The shape of the hole formed in the perovskite material was analyzed by changing the time. It can be seen that more etching is performed as the time increases. The sample with the longest processing time was examined in more detail, and it was classified into 7 regions by the difference according to the location of the plasma.

The Study of Water Stability of MDF Cement Composite by Addition of Epoxy Resin and Manufacturing Process (Epoxy Resin 첨가 및 제조공정에 따른 MDF 시멘트 복합재료의 수분안정성 연구)

  • 노준석;김태진;박춘근;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 1998
  • The effect of epoxy resin on the water stability of HAC/PVA based MDF cement composite were stu-died through the three different forming methods calendering extruding and warm pressing. In prexing step the epoxy resin was added in 5-15wt% of cement weight. The 3-point flexural strength of each dry and wet specimen which were immersed in water during 3. 7, 14 days was estmated and the mi-crostructural change of epoxy resin-added MDF cement composite due to water immersion was charac-terized by scanning electron microscopy. As the addition amount of epoxy resin the im-provement of water stability of MDF cement composite was achieved in most case. Especially through the warm press forming method the effectiveness of epoxy resin addition to the water stability was enhanced. When the epoxy resin was added by 5wt% to 7wt% the optimum flexural strength and water stability

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

Biogas Production and Utilization Technologies from Organic Waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2008
  • Anaerobic digestion (AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

Biogas Production and Utilization Technologies from Organic waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.202-205
    • /
    • 2008
  • Anaerobic digestion(AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Physical Property and Virtual Sewing Image of Lyocell treated with Epichlorohydrine for the fibrillation control

  • Park, Ji-Yang;Jeon, Dong-Won;Kim, Sin-Hee
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.46-60
    • /
    • 2008
  • Lyocell is a regenerated cellulosic fiber manufactured by an environmentally friendly process. The major advantages of lyocell are the excellent drape forming property, the genuine bulkiness, smooth surface, and high dry/wet tenacities. However, one drawback of lyocell is its fibrillation property, which would degrade its aesthetic quality and lower the consumer satisfaction. In our previous studies, lyocell was treated with epichlorohydrin, a non-formalin based crosslinker, to reduce its fibrillation tendency. To investigate the changes of physical properties upon ECH-treatment, the hand characteristics of ECH-treated fabric were observed using KES-FB system and the 3D-virtual sewing image of the fabrics were obtained using 3D CAD simulation system in this study. Since epichlorohydrin(ECH) treatment was conducted in the alkaline medium, the weight reduction was observed in all treated lyocell. The treated lyocell became light, smooth and flexible in spite of ECH crosslinker application. LT and RT in tensile property upon the ECH treatment did not change significantly, however, EMT and WT in the tensile property increased. The significant decrease in bending rigidity was resulted in all ECH-treated lyocell, which is the result of the weight loss upon the alkali condition of ECH treatment. The bending rigidity increased again in the ECH 30% treated lyocell, however, the B value is still lower than the original. Therefore, the ECH-treated lyocell would be more stretchable and softer than the original. Shear rigidity was also decreased in all ECH-treated lyocell, which would result in more drape and body fitting when it is made as a garment. The ECH-treated fabric showed the softer smoother surface according to SMD value from KES evaluation. The virtual 3D sewing image of the ECH-treated lyocell did not show a significant change from that of the original except ECH 30% treated lyocell. ECH 30% treated lyocell showed a stiffer and more puckered image than the original.