• Title/Summary/Keyword: Wet Removal

Search Result 328, Processing Time 0.021 seconds

Seasonal Deposition Characteristics of Water-soluble Ion Species in Ambient Aerosol in Iksan City (익산지역 대기에어로졸 중 수용성 이온성분의 계절별 침적 특성)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.56-70
    • /
    • 2013
  • Objectives: This paper aims to investigate the seasonal deposition characteristics of water-soluble ion species by comparing the deposition amount of two samples taken according to different sampling methods of deposition for ambient aerosol such as gases and particulate matters. Methods: Deposition samples were collected using two deposition gauges in the downtown area of Iksan City over approximately two weeks of each season in 2004. The type of deposition gauges consisted of two different sampling methods known as dry gauge and a wet gauge. The dry gauge was empty and used a dry PE bottle with an inlet diameter of 9.6 cm. Before the beginning of each deposition sampling, a volume of 30-50 ml distilled ionized water was added to the wet gauge to wet the bottom during the sampling period. Deposition samples were measured twice per day and analyzed for inorganic water-soluble ion species using ion chromatography. Results: The daily deposition amounts of all measured ions in the dry gauge and the wet gauge showed a significant increase when precipitation occurred, having no difference of deposition amount between in the wet gauge and in the dry gauge. By excluding two samples from rainy days during the sampling period, the mean daily deposition of all ions in dry gauge and wet gauge were $6.58mg/m^2/day$ and $18.16mg/m^2/day$, respectively. The mean deposition amounts of each ion species were higher in the wet gauge than in the dry gauge because of the surface difference of the sampling gauge, especially for $NH_4{^+}$ and ${SO_4}^{2-}$. The mean deposition amounts of $NH_4{^+}$ and ${SO_4}^{2-}$ in the wet gauge were found to be about 15.4 times and 5.2 times higher than that in dry gauge, with a pronounced difference between spring and summer, while the remaining ion species were 1.1-2.0 times higher in the wet gauge than in the dry gauge. Dominant species in the dry gauge were $Ca^{2+}$ and $NO_3{^-}$, accounting for 36.4% and 18.1% of the total ion deposition, whereas those in the wet gauge were $NH_4{^+}$ and ${SO_4}^{2-}$, accounting for 32.5% and 25.0% of the total ion deposition, respectively. Conclusion: The seasonal differences in deposition amounts of water-soluble ion species in ambient aerosol depending on the two types of different sampling methods were identified. This suggests that the removal of ambient aerosol is strongly influenced by the weather conditions of each season as well as the condition of earth's surface, such as dry ground and water.

Characteristic Study for Methyl-mercaptain Removal by an Essential Oil (식물추출물을 이용한 메틸멀캡탄 제거 특성 연구)

  • Park, Young-Gyu
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.151-156
    • /
    • 2007
  • Increasing public concerns over odors and air regulations necessitates the remediation of a wide range of odorous compounds for industrial purpose. Currently, wet scrubbing technique by neutralization using essential oils is utilized to treat methyl mercaptan odor. The chemical analysis is performed to analyze the composition of an essential oil by GC-MS. The objective of this study is to clarify the possibility of the neutralization of odors sprayed in the fixed bed and determine the removal efficiencies in the misty aerosol by different input odor concentration. It is found that methyl mercaptan is significantly removed in the wet scrubber, and their removal efficiency of methyl mercaptan is obtained by 98%.

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

A Study of Skid Resistance Characteristics by Deicing Chemicals (제설제 사용으로 인한 노면 미끄럼저항 특성 연구)

  • Lee, Seung Woo;Woo, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.813-819
    • /
    • 2006
  • Skid Resistance is a index to represent the friction between tire and road surface, which influences driving safety. Skid resistance varies with the conditions of tire, abrasion of road surface, vehicle speed, drying, wet and freezing condition of road surfaces. Especially, freezing occurs when temperature drops below $0^{\circ}C$ followed by snow or rain causes decrease of skid resistance. To recover the decreased skid resistance deicing work is applied. As a results of deicing works, freezing condition is changed into wet condition. However the wet road surfaces containing the remaining deicings agents may not show the skid resistance of normal wet condition. In this study, skid resistances in the condition of freezing, deicing process and deicing agents remained after snow-removal are evaluated. The test results, skid resistance recover quickly when Pre-wetted salt spreading and NaCl was used as deicing method. Skid resistance of Deicing agents remained on the road surface showed that concrete is higher than asphalt. superior effect. Recovery rate of skid resistance by comparison wet condition is 54~80%.

Development of the Rubber Removal Primer to Reduce Pavement Damage for Removal of Rubber Deposits in Runways (활주로 고무 퇴적물 제거를 위한 포장 파손 저감형 사전처리제 개발 연구)

  • Kim, Young-Ung;You, Kwang-Ho;Cho, Nam-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.695-704
    • /
    • 2016
  • Rubber deposited during aircraft landing is known as the main cause of reducing surface friction force on wet surfaces. Thus, rubber deposits are removed at regular intervals for sae airplane landing. The high-pressure waterblast method, widely used for the removal of rubber deposits, is regarded as the main cause for the loss of surface material because in this method, water hits the surface directly at a high pressure. In this study, a rubber removal primer is developed to reduce surface damage by lowering the pressure of waterblast relatively during the removal of rubber deposits such that the deposits are removed efficiently even with a lower water pressure. To achieve this, basic materials appropriate for the primer were selected and their performance, penetration rate, and site applicability were evaluated. Based on the evaluations, the proportion of additive required for improving the performance of the basic materials was first determined. Then, the optimum mix ratio was derived through the evaluation of the effect on pavements, and the development of the rubber removal primer was completed.

REMOVAL OF DISSOLVED OXYGEN USING PVDF HOLLOW FIBER MEMBRANE CONTACTOR

  • Lee, Ki-Sub;Park, You-In;Yeon, Sun-Hwa;Sung, Kyung-Soo;Rhim, Ji-Won;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.133-135
    • /
    • 2003
  • The removal of dissolved oxygen(DO) from water was studied using a poly(vinyliene fluoride)(PVDF) hollow fiber membrane contactor(HFMC) with the vacuum degassing process(VDP), Asymmetric porous PVDF hollow fiber membranes (HFM) for membrane contactor were prepared by a wet phase inversion method. In spinning of these PVDF hollow fibers, dimethy lacetamide (DMAc), LiCl and pure water were used as a solvent, a pore-forming additive and internal/external coagulant, respectively. The characteristics of the structure(pore size, porosity etc.) of the prepared PVDF HFMs as a function of concentration of pore-forming additive in polymer dope solution were studied. Also, the removal efficiency of DO from water according to flow rates of water, using PVDF HFMC with VDP, was studied. The performance of the asymmetric porous PVDF HFMC and a symmetric porous PP HFMC commercialized were compared. As a result, the asymmetric porous PVDF HFMC showed higher removal efficiency of DO than that of a symmetric porous PP HFMC.

  • PDF

Efficiency Characteristics by Mixed Absorbents for the Removal of Odor Compounds in the Wet Scrubber (습식세정탑 내 악취가스 제거를 위한 복합흡수제의 효율 특성)

  • Park, Young G.;Kim, Jeong-in
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • It was found that the absorbent mixed with 2-aminoethanol and others has been applied to remove them via chemical neutralization. The absorbent of natural second metabolites was achieved by a removal efficiency of 20~30% by itself depending on treatment conditions, but the complex absorbent mixed with 0.2% amine chemical provides the removal efficiency of over 98%. Optimal removal efficiencies have been examined against two major parameters of the temperature and pH to remove ammonia and hydrogen sulfide gases. The chemical analysis was also performed to analyze the composition of an essential oil by GC-MS. The monoterpenes in an essential oil reacted with odorous compounds by neutralization and their reaction mechanism was partially elucidated.

Source-Receptor Relationships of Transboundary Air Pollutants in East Asia Region Simulated by On-Line Transport Model

  • Jang, Eun-Suk;Itsushi Uno
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • Transboundary air pollution has recently become an area of increasing scientific interest and political concern as countries are receiving air pollutants from their neighbors. In order to gain a better understanding of the long-range transport processes of air pollutants and the source-receptor relationships among neighboring countries, an atmospheric transport model coupled with a RAMS(Regional Atmospheric Modeling System) model was applied to the East Asia region during the entire month of January 1993. The scalar transport option of the RAMS model was used to calculate special atmospheric constituents such as trace gases or aerosols. The sulfate production in clouds and rainwater and its removal processes by dry and wet deposition were considered. The sulfate budget from source regions to receptor regions was estimated by analysing the source-receptor relationships. When a specific receptor site revealed a sulfate value higher than the sulfate concentration based on its own source origin, this was taken to indicate long-range transport from another source region. The contribution ratio from various source region was calculated. The contribution ratio of dry and wet deposition was higher on the main continent of the East region. Furthermore, the high deposition amounts were identified on the west coast of Korea and the East China Sea.

  • PDF

Development of Marine Emission Control System on NOx and SOx through Seawater Electrolysis

  • Kim Houng-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.81-87
    • /
    • 2006
  • In marine air pollution control, SCR (Selective Catalytic Reduction) is reconized as the most effect method to control NOx, but on the other hand. seawater scrubber applying the basic characteristic that is naturally alkaline (pH typically around 8.1) is viewed as an economical SOx removal system at present. Especially, seawater scrubber would not be necessary to follow any of the various land based flue gas desulfurization methods. i.e. wet, dry or alkali scrubbing. However, these methods are not readily adaptable to marine conditions due to the quantifies of consumables required i.e. lime or limestone, the means of operation and the commercial availability. This research is undertaken to develop a new method as the main target of eliminating all exhaust emissions, particularly vessel, because of easy access to seawater and apt to apply a wet scrubber system. First, using the acidic seawater by seawater electrolysis, nitric monoxide(NO) is adequately oxidized to nitric dioxide $(NO_2)$by ClOx-in the acidic seawater, the electrolyzed alkaline seawater by electrolysis which contains mainly NaOH together with alkali metal ions $(i.e\;Na^{+}\;K^{+},\;Mg_{2}\;^{+},\;Ca_{2}\;^{+})$, is used as the absorption medium of NOx, the SOx are absorbed by relatively high solubility compared to other components of exhaust pollutants. The results found that the NOx and SOx removals could be achieved nearly Perfect.

Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method (습식 화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술동향)

  • Lee, Min-Su;Kim, Dong-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.131-143
    • /
    • 2018
  • Phosphorus (P) is a limited, essential, and irreplaceable nutrient for the biological activity of all the living organisms. Sewage sludge ash (SSA) is one of the most important secondary P resources due to its high P content. The SSA has been intensively investigated to recover P by wet chemicals (acid or alkali). Even though $H_2SO_4$ was mainly used to extract P because of its low cost and accessibility, the formation of $CaSO_4$ (gypsum) hinders its use. Heavy metals in the SSA also cause a significant problem in P recovery since fertilizer needs to meet government standards for human health. Therefore, P recovery process with selective heavy metal removal needs to be developed. In this paper some of the most advanced P recovery processes have been introduced and discussed their technical characteristics. The results showed that further research is needed to identify the chemical mechanisms of P transformation in the recovery process and to increase P recovery efficiency and the yields.