• Title/Summary/Keyword: Wet Compression

Search Result 58, Processing Time 0.023 seconds

Thermodynamic and Aerodynamic Meanline Analysis of Wet Compression in a Centrifugal Compressor

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1475-1482
    • /
    • 2006
  • Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases.

Performance Analysis of Centrifugal Compressor in Wet Compression (물입자를 분사하는 원심압축기의 성능해석)

  • Kang Jeong-Seek;Cha Bong-Jun;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.237-242
    • /
    • 2005
  • The energy consumed by compressor in gas turbine is equivalent to $30\sim50\%$ of energy produced by turbine and, therefore, research on reducing compression work is important in increasing the efficiency of gas turbine. One of the method to reduce the compression work is to inject small water droplets into the compressor. This method decreases the compression work by decreasing the compressor exit temperature through the evaporation of water. Researches on wet compression, up to now, are focused on thermodynamic analysis of wet compression where the decrease of exit flow temperature and compression work is demonstrated. This paper presents an thermodynamic and aerodynamic analysis of wet compression in centrifugal compressor for microturbine.

  • PDF

원심압축기에서 물분사 압축과정에 대한 이론적 해석

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases.

  • PDF

Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles (습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • An exergy analysis is carried out for the regenerative wet-compression Brayton cycle which has a potential of enhanced thermal efficiency owing to the reduced compression power consumption and the recuperation of exhaust energy. Using the analysis model, the effects of pressure ratio and water injection ratio are investigated on the exergy efficiency of system, exergy destruction ratio for each component of the system, and exergy loss ratio due to exhaust gas. The results of computation for the typical cases show that the regenerative wet-compression gas turbine cycle can make a notable enhancement of exergy efficiency. The injection of water results in a decrease of exergy loss of exhaust gas and an increase of net power output.

A Study on Mechanical Behaviors of Granite and Sandstone at Low Temperature (저온하에서의 화강암, 사암의 역학적 거동에 관한 연구)

  • 안경문;박연준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • To stabilize the energy price, the more storage facilities of energy are required and among the storage methods of LPG and LNG, the method of storage at low temperature under normal confining pressure is considered. It is needed to understand the mechanical and thermal characteristics of rock under temperature variation so that the behaviors of rock can be predicted. In this paper, the variation of the rock charateristics of the Hwangdeung granite and the Boryung sandstone is studied at low temperature. The mechanical characteristics of rock under low temperatures are that as temperature decreased, unaxial compression strength and Young's modulus increased for Hwangdeung granite; strength and Young's modulus in wet condition were greater than those in dry condition. In the case of Boryung sandstone, as temperature decreases unaxial compression strength and Young's modulus increase but decrease below -10$0^{\circ}C$ in dry condition and below -16$0^{\circ}C$ in wet condtion. The mechanical characteristics of rock after cooling to previous temperature and thawing are that uniaxial compression strength and Young's modulus decrease as temperature decreases. Uniaxial compression strength and Young's modulus in wet conditon decrease more than those in dry condition. Brazilian tension strength decreases as temperature decreases.

  • PDF

Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing

  • Rahmani, Hamidreza;Panah, Ali Komak
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2020
  • The long-term behavior of rockfill material used in the construction of infrastructures such as dams is of great significance. Because of concerns about the application of weak rockfill material in dam construction, further experimental studies on the behavior of these materials are required. In this study, laboratory experiments were performed to investigate the one-dimensional deformation and particle breakage of the weak rockfill material under stress. A one-dimensional compression apparatus was designed and developed for testing of rockfill materials of different maximum particle sizes (MPSs). The compression tests were performed under dry, wet and saturated conditions on samples of rockfill material obtained from a dam construction site in Iran. The results of the experiments conducted at the specimen preparation stage and the 1D compression tests are presented. In weak rockfill, the effect of the addition of water on the behavior of the material was uncertain as there were both an increases and decreases observed in particle breakage. Increasing the MPS of the weak rockfill materials increased particle breakage, which was similar to the behavior of strong rockfill material. In all of the MPSs examined, the settlement of specimens under wet conditions was higher than that observed under dry conditions. Also, the greatest deformation occurred during the first hour of loading.

INDUSTRIAL STATUS OF DRY PLATING AS AN ALTERNATIVE TO WET PLATING PROCESS IN KOREAN SURFACE FINISHING INDUSTRY

  • Kwon, Sik-Chol;Baek, Woon-Sung;Lee, Gun-Hwan;Rha, Jong-Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.253-256
    • /
    • 1999
  • Wet plating has been initiated and developed as a major surface finishing technology as of the long customized and highly productive process until now. As the external compression by virtue of the environmental preservation becomes stricter, there has been new move to adapt dry plating line instead of conventional wet plating one in domestic surface finishing industry. Dry plating, so-called, plasma surface technology has been developed in semiconducting industry and becomes a key technology to be useful as an alternative to wet plating in surface finishing industry. The historical progress of domestic surface finishing industry was outlined with the background on the adaptation of three dry plating processes-plasma spraying, plasma nitriding and ion plating. The present status of domestic industrial activity was covered on major alternative to wet plating.

  • PDF

Load Carrying Capacity Evaluation of WPC Soundproof Panel Subjected to Vertical Loads (WPC 방음판의 수직하중에 대한 내하성능 평가)

  • Chang, Taesun;Lee, Il Keun;Kim, Chulhwan;Shim, Jaewon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.823-826
    • /
    • 2014
  • The weight of soundproof panels is an important consideration in the design of both panels and supporting structures. The soundproof panels in noise barriers have to carry their net weight in wet condition respectively the reduced weight and also the weight of the above installed panels in wet condition without showing any failing. In this study, a compression test and a flexural test were performed to determine the maximum vertical load which a wood plastic composites (WPC) panel can bear. In addition, the maximum loading number and height of WPC panels in a noise barrier were calculated for full, simple, and continuous support conditions.

  • PDF

Stabilization of Wet Foams for Porous Ceramics Using Amphiphilic Particles

  • Pokhrel, Ashish;Park, Jung-Gyu;Nam, Jeong-Sic;Cheong, Deock-Soo;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.463-466
    • /
    • 2011
  • Wet foams formed through direct foaming were stabilized using various concentrations of amiphiphilic particles that could control pore size and porosity. These porous materials showed moderate strength upon compression with high porosity. Bubble size and wet foam stability were tailored by amphiphile concentration, particle concentration, contact angle, and pH of the suspension to obtain crack-free porous solid after sintering. Closed and open pores were obtained with sizes of 30~300 ${\mu}m$ and porosities of over 80%.

Effect of Coating Methods on the Properties of Poly(lactide)-coated Paperboard: Solution Coating vs. Thermo-compression Coating

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1155-1160
    • /
    • 2009
  • Poly(lactide) (PLA)-coated paperboards were prepared by solution coating and thermo-compression coating methods and their effect of coating on the packaging properties such as tensile, water resistance, water vapor barrier, and heat sealing properties was tested. Compared with uncoated control paperboard, tensile strength (TS) of PLA-coated paperboard increased profoundly (2.2-2.6 folds) with slight increase in elongation at break (E). Water absorptiveness (WA) of the paperboard decreased 74-170 folds and water vapor permeability (WVP) decreased 6.3-22.1 folds by coating with PLA, which indicates an increase in the hydrophobicity of the surface of paperboard. Compared with polyethylene (PE)-coated paperboard, both PLA-coated paperboard exhibited 2.3 time higher heat sealing strength. In addition, the PLA-coated paperboards showed equal or higher wet TS than PE-coated paperboard. All the test results showed that the paperboard coated by the thermo-compression coating method was similar to or better than those of coated by the solution coating method.